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Abstract

We study a two-period entry model where the incumbent, privately informed about his cost of

production, makes a long run investment choice along with a pricing decision. Investment is cost-

reducing and its effects are assumed to differ across incumbent’s types, as a result investment plays

a double role as a commitment variable and, along with price, as a signal. We ask whether and how

investment decisions allow the incumbent to limit entry into the market. We find that the incumbent

will never undertake strategic investment to deter profitable entry, because when incumbent’s costs are

private information the signaling role of investment cancels out its value of commitment.
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Salerno, Italy, e-mail: damato@unisa.it.

1



1 Introduction

We study a two-period entry problem where the incumbent has the opportunity to make a long-term

investment choice along with a pricing decision. The incumbent is privately informed about his cost

of production and investment is cost-reducing. The level of investment is decided in the first period

and affects current and future costs. We suppose that the cost reducing impact differs across types

of incumbent, a key assumption suggested by the heterogeneity of production costs.

The originality of the model we set out to study in this paper rests on the double role played

by investment. Being observable and having persistent effects, investment has a commitment value

as in the classical models studied by Spence (1977) and Dixit (1980). On the other hand, having

different cost reducing effects across types, investment is also a signal of incumbent’s costs along

with price. Our primary interest is to understand how the double role of investment, as commitment

variable and as a signal, affects incumbent’s behaviour. In particular, we are interested to know

how and to what extent the commitment value of investment can be used by the incumbent for

entry deterrence purposes, in combination with predatory pricing, in an environment with private

information. Answering these questions is relevant for both competition policy analysis and the

study of managerial strategies in imperfectly competitive sectors.

The structure of the entry problem is standard. First, Nature selects incumbent’s costs which

can be either low or high. After observing his cost, the incumbent makes a choice about first-

period output (or equivalently price) and investment. Then, after observing incumbent’s choice, a

potential entrant decides whether to enter or not into the market. If entry takes place the entrant

learns incumbent’s cost and the firms compete à la Cournot. Otherwise, the incumbent remains a

monopolist. This entry problem is formalized as a game with multiple signals. The notion of Perfect

Bayesian Equilibrium is used as the solution concept and the Intuitive Criterion is applied to refine

equilibria.

Our major result is that an incumbent who is privately informed about his costs can not take

full advantage of investment, in fact he will never invest strategically to deter profitable entry. Our

analysis shows that there exist pooling equilibria where, as in Milgrom and Roberts (1982), the
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incumbent achieves deterrence. However, the most plausible outcome of the game is that the ineffi-

cient incumbent will invest to accommodate entry while the efficient one will cut down investment

to zero and charge a limit price to signal his cost to the potential entrant, who will stay out. Under

no circumstances profitable entry can be deterred, because the commitment value of investment to

the inefficient incumbent is cancelled out by its signaling role to the efficient type. This conclusion

follows from the formal analysis of the game where it is shown that there is a unique separating

equilibrium which survives the Intuitive Criterion while all the pooling equilibria fail this test.

The basic insight of our result is that the opportunity to invest in an environment characterized

by private information is a sort of incumbent’s curse as it prevents the inefficient type from using

investment as a commitment device. Although the opportunity to invest may raise the incentive

to mimic by the inefficient incumbent and may allow him to behave strategically, the heterogeneity

of the cost-reducing impact of investment makes revelation of costs cheaper to the efficient type

and it is this latter force that drives the equilibrium outcome. The major policy implication of this

result is that, in the presence of private information, limit pricing strategies are not likely to support

deterrence of profitable entry when the incumbent has the opportunity to invest.1

Our paper contributes to the vast literature on business strategies originated from the early

work by Spence (1977), Dixit (1980), Fudenberg and Tirole (1984) and Bulow, Geanakoplos and

Klemperer (1985) among others. Our model extends previous analysis because, by introducing

entrant’s uncertainty about incumbent’s cost and an heterogeneous impact of the cost reducing

investment, it allows for a deeper understanding of the interplay between pricing and investment

decisions.

Our model is also strictly related to the contribution by Milgrom and Roberts (1982) and the

literature on multiple-signal games. Early contributions are the work by Milgrom and Roberts

(1986), who studied pricing and advertising decisions as signals of quality, and the models of entry

1Notice that this result does not necessarily mean that limit pricing will never limit entry when the incumbent has

the opportunity to invest. As shown in Brighi, D’amato and Piccolo (2005), Brighi and D’Amato (2014) and In and

Wright (2017), limit pricing may still have deterring effects on entry when investment is not publicly observable by

potential entrants.
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by Bagwell and Ramey (1988) and Bagwell (2007), where pricing and advertising are used by the

incumbent to signal information about costs. Our game, however, differs from the above models

because investment, unlike advertisement, has persistent effects. A broader interpretation of invest-

ment as advertising with a permanent effect on the installed base of customers, is consistent with

the basic features of our model, which may be used to extend the analysis of Bagwell and Ramey

(1988) to the case in which advertising, affecting post entry as well as pre-entry market demand, has

a commitment value. Finally, we also notice that Bagwell (2007) obtains a result which is analogous

to our finding as he shows that limit pricing and advertising do not deter profitable entry. However,

his result rests on a completely different kind of analysis and specifically on the assumption that

the entrant’s response to signals is not binary, but smoothly changing with beliefs.

The rest of the paper is organized as follows. Section 2 sets out the entry problem and the

signaling model is formalized in section 3. Section 4 contains the equilibrium analysis, while the last

section provides a summary and some final remarks. All the proofs are in the Appendix.

2 An entry problem with investment and private information

We consider a standard two periods entry model where an incumbent firm faces the potential entry

of a competing firm in a market for a homogeneous good. In the first period firm 1, the incumbent,

who has private information about his costs of production, decides how much to produce, q ≥ 0, and

how much to invest in a cost reducing technology, e ≥ 0. In the second period firm 2, the entrant,

after observing incumbent’s choice, decides whether to enter into the market. If entry occurs, firm 2

pays an entry cost, learns the incumbent’s production costs (learning upon entry) and firms compete

à la Cournot. Otherwise, firm 1 remains a monopolist and the potential entrant gains her outside

option normalized to zero.

Marginal costs are constant and depend on investment, while fixed costs of production are set

to zero for convenience. There are only two types of incumbent, type L with a low marginal cost

(efficient incumbent) and type H with a high marginal cost (inefficient incumbent). We denote by

θt(e) ≥ 0 the marginal cost of type t, with t = L,H, hence θH(e) < θL(e). The symbol θt stands for
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θt(0). The prior probability that the incumbent is inefficient is denoted by β.

Heterogeneity of marginal costs suggests that the cost-reducing impact of investment differs

across types of incumbent. In fact, as the more efficient firm is closer to the technological frontier,

it is unlikely that his chances to enhance cost efficiency are the same as those of the other firms. It

is reasonable to assume that the same level of investment is more effective in cutting costs if it is

undertaken by the inefficient incumbent rather than by the efficient one. Indeed, being further away

from the technological frontier the inefficient incumbent can more easily catch up with technological

progress. To simplify the analysis, we will assume that the cost-reducing effect of investment for the

efficient incumbent is negligible and precisely that θL(e) = θL for all e. The inefficient incumbent,

instead, has the opportunity to reduce the cost gap with respect to type L by investing. The cost

reducing technology of the high cost type, θH(e), is represented by a strictly decreasing differentiable

function, with θH(e) > θL for all e. The most important implication of assuming heterogeneity in

the cost-reducing effect is that investment may be used by the incumbent to signal his cost of

production.

Investment is made by the incumbent in the first period and affects current as well as future

marginal costs. Having long-term effects, investment enables the incumbent to influence post-entry

competition, hence it has a commitment value. In other words, the incumbent can invest strategically

in the first period in order to limit entry of firm 2 in the second.

Market demand in each period is described by an inverse demand function, p(q), which is assumed

to be differentiable and strictly decreasing. The per period incumbent’s profits (gross of investment

costs e) are given by Πt(e, q) ≡ [p(q) − θt(e)]q. The function Πt(e, q) is differentiable and strictly

quasi-concave in q, so that, for each level of e, the incumbent’s per period profit maximization

problem has a unique solution, the monopoly quantity denoted by mt(e). Monopoly profits, which

are strictly positive, are denoted by Mt(e) ≡ Πt(e,mt(e)). For convenience of notation we define

mt ≡ mt(0) and Mt ≡ Mt(0). It can be noticed that the L type monopoly quantity and profit are

independent of investment, i.e. mL(e) = mL and ML(e) = ML.

Incumbent’s profits in the second period depend on the entry decision by firm 2, which will be
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denoted by y ∈ {0, 1}, with y = 1 if entry takes place and 0 otherwise. If entry does not take place,

the incumbent remains a monopolist and earns Mt(e), while firm 2 makes zero profits. If entry

occurs, instead, the two firms compete in quantities and earn duopoly profits. Having persistent

effects on incumbent’s costs, investment affects post-entry profits of both firms. Incumbent’s duopoly

profits are denoted by Dt(e) ≥ 0, while entrant’s duopoly profits, net of entry fee, are denoted by

D2(e, t), because they also depend on the type of incumbent she faces. We define Dt ≡ Dt(0)

and D2(t) ≡ D2(0, t). Incumbent profits DH(e) are increasing and entrant’s profits D2(e,H) are

decreasing in e, whereas DL(e) = DL and D2(e, L) = D2(L).

The incumbent’s decision about q and e, is based on total profits over the two periods that,

assuming no time discounting, are given by

Vt(e, q, y) = Πt(e, q)− e+ yDt(e) + (1− y)Mt(e). (1)

The function VH(e, q, y) is assumed to be strictly quasi-concave in e and q. If the incumbent decides

to accommodate entry, he will produce the monopoly output in the first period and he will choose

the optimal level of investment taking into account that duopoly profits will be made in the second

period. The total profits will be respectively given by V A
L = VL(0,mL, 1) = ML + DL, for type L,

and by

V A
H = max

e
VH(e,mH(e), 1) (2)

for type H. The maximizing level of investment in problem (2) is denoted by eA and the associated

monopoly quantity by mA ≡ mH(eA).

Firm 2 will make her entry decision on the basis of her expected profits. After observing first

period incumbent’s choice, the entrant will make an inference about incumbent’s cost. Her beliefs

about the probability of the incumbent being of type H are denote by β̂ and her expected post-entry

profits are given by

β̂D2(e,H) + (1− β̂)D2(L). (3)

Firm 2 enters only if expected profits are strictly positive.
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To let investment play a role in the entry problem we have to introduce a few assumptions.

First of all, we will require a positive level of investment for entry deterrence to take place and in

particular a level exceeding that undertaken by the inefficient incumbent to accommodate entry. We

assume that entry is never profitable against a low cost incumbent, i.e. D2(L) < 0 and that firm 2

post-entry profits are strictly positive if she faces an inefficient incumbent, regardless of the level of

investment undertaken, i.e. D2(e,H) > 0. In addition, we suppose that firm 2 expected post-entry

profits (at prior belief) are strictly positive if the incumbent invests the amount of accommodation,

i.e.

βD2(eA, H) + (1− β)D2(L) > 0 (4)

An immediate consequence of (4) is that deterrence of profitable entry requires a higher level of

investment than eA. Hence, to ensure that investment can actually deter entry we assume that there

exists a level of investment e0, the investment of deterrence, at which firm 2 expected post-entry

profits vanish, i.e.

βD2(e0, H) + (1− β)D2(L) = 0. (5)

The investment of deterrence e0 is strictly related to market entry conditions. High values of e0 are

associated with favourable entry conditions and vice-versa.

The main consequences of the above assumptions is that e0 > eA, namely in order to deter entry

the incumbent must over invest as compared to the level of investment undertaken to accommodate

entry. The next two conditions are introduced to ensure that the choice to deter profitable entry by

undertaking a level of investment e0 is preferred to accommodation by any type of incumbent. We

assume that

VH(e0,mL, 0) > V A
H . (6)

and

VL(e0,mL, 0) > V A
L . (7)

The problem that will be addressed is whether the incumbent will over invest to deter profitable

entry or whether he will invest to accommodate entry, when he owns private information about his

costs. To answer this question we will formalize the problem as a signaling game.
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3 The signaling game

The entry problem outlined in the previous section will be modeled as a multiple signaling game. In

fact, not only investment can be used as a commitment variable being an irreversible and publicly

observable choice affecting post-entry competition, but it can also play a role as a signal along with

price. As it is well known, price acts as a signal because a price cut is cheaper for the low cost

incumbent. Similarly, being purely dissipative for type L and cost reducing for type H, investment

is ‘more expensive’ for the efficient incumbent, who can use it to reveal his cost to the entrant.2

Therefore, our entry problem can be formalized as a game with multiple signals and in fact, it has

some similarities with the models studied by Bagwell and Ramey (1988) and Bagwell (2007).

The timing of the game is as follows. Nature moves first and chooses the type of incumbent.

After observing his costs, the incumbent decides his first period output (or price) and a level of

investment, i.e. he sends the two signals q and e. Next the potential entrant, who does not know

the type of incumbent, observes the signals and decides whether to enter or not into the market.

Finally, payoffs are received. The cost reducing technology θH(e), the marginal cost θL, the prior

probability β, market demand p(q) and duopoly profits Dt(e) and D2(e, t) are common knowledge,

whereas type t is private information to the incumbent.

Players strategies and beliefs are as follows. A pure strategy for the incumbent is a function

which associates with each type a level of investment and a first period quantity and consists of

two pairs, (eH , qH) and (eL, qL). A pure strategy by firm 2 associates the entry decision to any

observable choice by the incumbent and it is denoted by y(e, q) ∈ {0, 1}. A system of beliefs for

firm 2 is a function β̂ which associates the ex post probability of the H type to any observable choice

by the incumbent, (e, q). The incumbent’s payoff is given by (1), the entrant’s payoff is given by

D2t(e) in the case of entry and is equal to zero otherwise. To find a solution to the signaling game

the standard notion of Perfect Bayesian Equilibrium (PBE) is applied.3

2Notice that investment retains its character of signal even if it is cost reducing for the L type, provided that the

effect of investment is larger for type H than for type L.

3See Fudenberg and Tirole (1991).
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Definition 1. A profile of strategies (et, qt) and y(e, q), with t = H,L, is a PBE of the signaling

game with investment, if there exist beliefs β̂(e, q) satisfying the following conditions:

(i) The incumbent’s strategy is optimal, i.e. (et, qt) = argmax Vt(e, q, y(e, q)), for t = H,L

(ii) The entrant’s strategy is optimal, i.e. y(e, q) = 1 if and only if

β̂(e, q)D2(e,H) + (1− β̂(e, q))D2(L) > 0.

(iii) Beliefs are consistent with Bayes’ rule.

Condition 1.(iii) places restrictions only on beliefs along the equilibrium path. Specifically, if

(et, qt) is an incumbent’s equilibrium strategy, consistency of beliefs requires that β̂(eH , qH) = β if

(eH , qH) = (eL, qL) and β̂(eH , qH) = 1, β̂(eL, qL) = 0 if (eH , qH) 6= (eL, qL). As typical in signaling

games, the lack of restrictions on off-equilibrium beliefs generates a multiplicity of equilibria which

will be refined by applying the Intuitive Criterion originally proposed by Cho and Kreps (1987).

Recall that the Intuitive Criterion is built on the notion of equilibrium domination, which states

that a deviation from a given equilibrium is equilibrium dominated for type t if the equilibrium payoff

is greater than the best conceivable payoff that type t may obtain from that deviation. Formally, let

V ∗t denote the payoff to type t in a given equilibrium, then a deviation (ẽ, q̃) from the equilibrium

choice (et, qt) is equilibrium dominated for type t if V ∗t > Vt(ẽ, q̃, 0), as total profits are greater

under no entry. Beliefs supporting a given equilibrium satisfy the Intuitive Criterion if, whenever a

deviation is equilibrium dominated for type t and strictly preferred by type t′, the entrant does not

assign that deviation to type t. For example, if the deviation (ẽ, q̃) is equilibrium dominated for H

and strictly preferred by L given the entrant’s best reply to L, i.e. if

VH(eH , qH , y(eH , qH)) > VH(ẽ, q̃, 0) (8)

VL(eL, qL, y(eL, qL)) < VL(ẽ, q̃, 0), (9)

the off-equilibrium belief must be β̂(ẽ, q̃) = 0. With these beliefs, however, the incumbent’s strategy

of the given equilibrium is not optimal. Thus, if (8) and (9) hold, the equilibrium strategy does not
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meet the Intuitive Criterion. Following Cho and Kreps (1987, p. 202), an intuitive equilibrium is

formally defined as follows.

Definition 2. A Perfect Bayesian Equilibrium, (et, qt) and y(e, q), with t = H,L, is intuitive if

there exists no deviation (ẽ, q̃) 6= (et, qt) such that (8) and (9) hold.4

In the next section we will study pure strategy equilibria and work out the solution to the sig-

naling game. The following standard condition will be used to guarantee the existence of separating

equilibria5

ML −DL ≥MH −DH . (10)

Condition (10) simply states that the low cost incumbent benefits from entry deterrence more than

the high cost incumbent. Finally, in order to avoid trivial forms of separation, we assume that the

high cost incumbent has an incentive to mimic the low cost one, i.e.

VH(0,mL, 0) > V A
H . (11)

4 No deterrence of profitable entry

Let us consider separating and pooling equilibria in turn. A separating equilibrium is a PBE where

different types of incumbent make different choices or, equivalently, where (eH , qH) 6= (eL, qL). In a

separating equilibrium information is fully revealed, therefore the entrant only enters when she faces

a high cost incumbent. The H type accommodates entry, i.e. he produces the monopoly quantity

in the first period and the duopoly quantity after entry, and decides a level of investment which

maximizes total profits. Hence, the equilibrium choice for the H type is eH = eA and qH = mA and

the maximum total profit from accommodation (given by (2)) is V A
H = MH(eA)− eA +DH(eA).

4Notice that we need not consider the further requirement, implied by Cho and Kreps (1987), that there is no

deviation satisfying (i) V ∗
L > VL(ẽ, q̃, 0) and (ii) V ∗

H < VH(ẽ, q̃, 1). Indeed, a deviation will never satisfy (ii) as, when

entry takes place, total profit for H is always lower than the equilibrium payoff.

5See, for instance, Tirole (1988) or Bagwell and Ramey (1988).
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The equilibrium choice by the L type, (eL, qL), must satisfy the ‘incentive compatibility condition’

for the H type, i.e.

VH(eL, qL, 0) ≤ V A
H . (12)

In other words, the high cost incumbent should prefer accommodating entry rather than mimicking

the efficient type. Furthermore, the L type total profit at equilibrium must be greater than the

‘accommodation profit’ V A
L , i.e. the total profit he may earn by undertaking no investment, pro-

ducing the monopoly output in the first period and the duopoly quantity in the second. Thus, the

equilibrium choice (eL, qL) must satisfy the ‘participation condition’

VL(eL, qL, 0) ≥ V A
L . (13)

It is not difficult to see that an incumbent’s strategy with (eH , qH) = (eA,mA) and (eL, qL)

satisfying (12) and (13) supports a separating equilibrium.6 For example, consider the system of

beliefs assigning to the high cost type any choice different from (eL, qL), i.e. β̂(e, q) = 1 for any

(e, q) 6= (eL, qL) and 0 otherwise, and the entrant’s strategy y(e, q) = 1 for any (e, q) 6= (eL, qL) and

0 otherwise. This profile of strategies and the specified system of beliefs are easily seen to satisfy

Definition 1.

Although the freedom in the choice of off-equilibrium beliefs gives rise to a multiplicity of equi-

libria, it turns out that there is a unique separating equilibrium surviving the Intuitive Criterion.7

Proposition 1. In the signaling game with investment, there exists a unique separating equilib-

rium satisfying the Intuitive Criterion. The equilibrium is supported by the incumbent’s strategy

(eH , qH) = (eA,mA) and (eL, qL) = (0, q∗), where q∗ is implicitly defined by the equation

VH(0, q∗, 0) = V A
H . (14)

Moreover, q∗ > mL.

6For a formal proof see Lemma 1 in the Appendix.

7By uniqueness we mean that the same incumbent strategy is shared by all the equilibria.
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Figure 1: Intuitive separating equilibrium quantity.

In the intuitive separating equilibrium, the inefficient incumbent invests as much as needed to

accommodate entry and charges his monopoly price. The efficient incumbent, instead, cuts down

investment to zero and sets a limit price, i.e. a price below the monopoly level. By so doing he is

able to signal his cost to the entrant who stays out. Notice that, in the separating equilibrium, limit

pricing does not deter profitable entry, because firm 2 stays out exactly when entry is unprofitable.

Figure 1, where total profits of both types of incumbent are depicted as functions of q at e = 0,

illustrates the result of Proposition 1 by deriving the equilibrium output q∗, which is shown to exceed

the level of monopoly of the low cost type.

Let us turn to the analysis of pooling equilibria. A pooling equilibrium is a PBE where all types

of incumbent send the same signals: (eL, qL) = (eH , qH) = (eP , qP ). Since the entrant does not

learn any new piece of information from the observation of the equilibrium choice, the beliefs about

the incumbent type are unmodified and they are equal to prior probabilities, i.e. β̂(eP , qP ) = β. In

a pooling equilibrium entry can not take place, because otherwise each type of incumbent would be

better off by choosing his own monopoly output in the first period. As firm 2 expected post-entry

12



profits must be non positive, the incumbent is required to undertake a sufficiently high level of

investment and, precisely, a level not lower than e0 as defined by (5), hence eP ≥ e0. Furthermore,

the incumbent’s strategy must allow each type to obtain at least the payoff earned if entry is

accommodated, which means that the following ‘participation conditions’ are satisfied:

VH(eP , qP , 0) ≥ V A
H , (15)

VL(eP , qP , 0) ≥ V A
L . (16)

It turns out that a pooling equilibrium is characterized by an incumbent’s strategy satisfying (15)

and (16), with eP ≥ e0 (see Lemma 3 in the Appendix). Under conditions (6) and (7), there is

a multiplicity of pooling equilibria and, in particular, there exists a pooling equilibrium supported

by the incumbent’s strategy (eP , qP ) = (e0,mL), i.e. the equilibrium where both types play the

minimum level of investment consistent with entry deterrence and the monopoly quantity of the low

cost incumbent, while firm 2 does not enter. This is the most profitable pooling equilibrium from

the point of view of the efficient incumbent, as his profit is VL(0,mL, 0) = 2ML − e0. Notice also

that if the investment of deterrence is not too high, i.e. entry conditions are not much favourable,

it may well happen that ML − e0 > ΠL(0, q∗), so that total profits of the efficient incumbent are

greater under the pooling equilibrium than under the intuitive separating equilibrium characterized

in Proposition 1, i.e. VL(0,mL, 0) > VL(0, q∗, 0). In other words, not only the inefficient type, but

also the efficient incumbent is better off when profitable entry is deterred.

In a pooling equilibrium, the two signals provide the entrant with no new piece of information

about incumbent’s cost, so that the level of investment exceeding e0 is able to modify the perceived

profitability of entry to firm 2. Hence, matched with a suitable pricing policy, investment gains a

value of commitment which allows the incumbent to deter profitable entry. In order to be supported,

however, a pooling equilibrium requires the efficient type to send a completely dissipative signal in

terms of investment expenditures that have no reducing impact on his costs. Is this dissipative

behaviour plausible? Or, equally, is there any pooling equilibrium surviving the Intuitive Criterion?

It turns out that no pooling equilibrium exists which meets the conditions set out by Definition 2.
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Proposition 2. In the signaling game with investment there are no pooling equilibria satisfying the

Intuitive Criterion.

The logic behind the result of Proposition 2 is quite straightforward. By cutting down investment

to zero and increasing quantities above the level stipulated in the candidate pooling equilibrium,

an efficient incumbent can persuade the entrant that such a low price in the deviation with no

investment can not be profitable to an inefficient incumbent, whereas it allows type L to save on

the dissipation of useless expenses. The use of investment as a signal by the efficient incumbent

prevents the inefficient one to use investment as a commitment variable. More generally, it is the

fact that investment has a different cost-reducing impact across types, and so can act as a signal,

to make the pooling equilibrium impossible to survive the application of the Intuitive Criterion.8

The overall analysis of the signaling model with investment provides an unambiguous prediction

of the most plausible outcome of the game, which is the unique intuitive separating equilibrium

characterized in Proposition 1. Surprisingly, in the the presence of private information about costs,

the strategic use of investment can not be fully exploited by the incumbent. In fact, investment is

undertaken only to accommodate rather than to deter profitable entry.

Finally, we notice that the main point of our analysis still survives even if the cost reducing

impact of investment were strong enough to allow the inefficient incumbent to cut down to zero

post-entry profits to firm 2. As can be seen, even in such a case only a separating equilibrium passes

the Intuitive Criterion test and in such equilibrium the inefficient incumbent will over invest to deter

unprofitable entry. The point remains that strategic investment can not be used to deter profitable

entry when private information about incumbent’s costs is present.

8It is interesting to notice that the Intuitive Criterion does not rule out, in general, pooling equilibria either in

the original model of limit pricing put forward by Milgrom and Roberts (1982) or in the model with advertising by

Bagwell and Ramey (1988).
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5 Summary and conclusions

We studied a model of entry in which an incumbent, who is privately informed as to his costs, has

the opportunity to undertake a long run investment in a cost reducing activity. Having persistent

effects on post-entry competition, investment has a commitment value. Moreover, as investment is

assumed to have an heterogeneous effect across types it also acts, along with price, as a signal of

incumbent’s costs.

We analysed the strategic use of investment in limiting entry by means of a signaling game à

la Milgrom and Roberts (1982) with multiple signals. The entry game was specified so as to leave

to the inefficient incumbent two alternative options, either to invest to accommodate entry, or to

over invest to deter profitable entry. Our primary interest was to find whether investment gains any

further value of commitment, when the entrant is uncertain about incumbent’s costs.

Although both pooling and separating equilibria are possible in our setting, we found that

only a separating equilibrium can be the solution to the entry problem, because it is the sole

equilibrium surviving the Intuitive Criterion. In this equilibrium, the inefficient incumbent invests

to accommodate entry while the efficient one makes zero investment and charges a limit price to

signal his cost to the entrant who stays out. Hence, we conclude that the strategic use of investment

under conditions of private information is limited, in fact investment will only be undertaken to

accommodate rather than to deter profitable entry. This result, which is due to the double role of

investment as a commitment variable and as a signal, obtains because the signaling role of investment

to the efficient incumbent cancels out its commitment value to the inefficient one.

The major implication of this result for the analysis of competition policy is that in markets

where the costs of the incumbent are not directly observable by potential entrants, it is highly likely

that strategic investment is mainly undertaken by inefficient incumbents to accommodate entry.

Of course, if investment had a cost-reducing effect strong enough to bring down to zero entrant’s

post-entry profits, an inefficient incumbent would over invest to deter entry. In such a case, as usual,

the investment behaviour of the incumbent should be evaluated by antitrust authorities on the basis

of its overall welfare effects. In any case, whether investment has strong cost-reducing effects or
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not, in the presence of private information about incumbent’s cost, investment does not gain any

commitment value that allows the incumbent to deter profitable entry.

Appendix

Lemma 1 An incumbent’s strategy supports a separating equilibrium if and only if (eH , qH) =

(eA,mA) and (eL, qL) satisfies (12) and (13).

Proof of Lemma A.1

Let (eH , qH) = (eA,mA) and (eL, qL) satisfy (12) and (13). We have to show that the incumbent’s

strategy supports a separating equilibrium. Take the beliefs which assign to the H type any choice

different from (eL, qL), i.e. β̂(e, q) = 1 for any (e, q) 6= (eL, qL) and β̂(e, q) = 0 for (e, q) = (eL, qL).

These beliefs obey Bayes’ rule. Given these beliefs and the assumption D2(e,H) > 0, firm 2 expected

profits are strictly positive except when (e, q) = (eL, qL), thus the entrant’s strategy, y(e, q) = 0 if

(e, q) = (eL, qL) and 1 otherwise, satisfies Definition 1.(ii). Let us show that the incumbent’s strategy

is optimal given the entrant’s strategy. As regard to type H, we have VH(eA,mA, 1) ≥ VH(e, q, y(e, q))

for all (e, q). Indeed, for (e, q) 6= (eL, qL), we have y(e, q) = 1 and the inequality holds by definition

of eA; moreover, for (e, q) = (eL, qL) the above inequality is satisfied because of (12). As for type L,

we have VL(eL, qL, 0) ≥ VL(e, q, y(e, q)) for all (e, q). Indeed, for (e, q) 6= (eL, qL) firm 2 enters, then

y(e, q) = 1 and the inequality holds because of (13) and definition of V A
L ; if (e, q) = (eL, qL) firm 2

does not enter and the above inequality holds as an equality. This completes the first part of the

proof.

To show the converse let us suppose that the incumbent’s strategy (eH , qH) and (eL, qL) supports

a separating equilibrium, so that β̂(eH , qH) = y(eH , qH) = 1 and β̂(eL, qL) = y(eL, qL) = 0. By

Definition 1.(i), VH(eH , qH , 1) ≥ VH(e, q, y(e, q)) and, by definition of eA as the solution of (2),

we have VH(eA,mA, 1) ≥ VH(eH , qH , 1). Hence, as (eA,mA) is optimal for type H it must be
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(eH , qH) = (eA,mA). Next, we have to show that (eL, qL) satisfies (12) and (13). Let us suppose, to

the contrary, that (eL, qL) violates (12); then (eA,mA) cannot be an optimal choice for type H, as

(eL, qL) gives higher profits because avoids entry (y(eL, qL) = 0). Now let us suppose that (eL, qL)

violates (13); then (eL, qL) cannot be an optimal choice for L because (0,mL) gives higher profits

even when Firm 2 enters, therefore these contradictions complete the proof. Q.E.D.

Lemma 2 An incumbent’s strategy, (et, qt) with t = H,L, supports an intuitive separating equi-

librium if and only if (eH , qH) = (eA,mA) and (eL, qL) is a solution to the following maximization

problem9

max
e,q

ΠL(q)− e

subject to ΠH(e, q)− e+MH(e) ≤ V A
H (17)

ΠL(q)− e ≥ DL (18)

Proof of Lemma 2

Let us suppose that (e∗, q∗) is a solution to the maximization problem. We have to show that the

incumbent’s strategy, (eH , qH) = (eA,mA) and (eL, qL) = (e∗, q∗), supports an intuitive separating

equilibrium. First, notice that (e∗, q∗) satisfies (12) and (13) since these inequalities are equivalent

to (17) and (18) respectively. Therefore, by Lemma 1, (eH , qH) = (eA,mA) and (eL, qL) = (e∗, q∗),

supports a separating equilibrium. To show that the equilibrium is intuitive, let us suppose that

there exists a deviation (ẽ, q̃) 6= (e∗, q∗), which is equilibrium dominated for H, i.e. VH(ẽ, q̃, 0) <

VH(eA,mA, 1), but not for L, i.e. VL(ẽ, q̃, 0) > VL(e∗, q∗, 0). Therefore, (ẽ, q̃) satisfies (17), but from

the last inequality ΠL(q̃)− ẽ > ΠL(q∗)−e∗. Therefore, (e∗, q∗) is not a solution to the maximization

problem contrary to the assumption. This contradiction completes the first part of the proof.

To show the converse, let us suppose that the incumbent’s strategy, (eH , qH) = (eA,mA) and

(eL, qL) = (e∗, q∗), supports an intuitive separating equilibrium. We have to show that (e∗, q∗) is a so-

lution to the maximization problem. Let us proceed by contradiction and suppose that (e∗, q∗) is not

9Since the L type profit does not depend on e, for ease of notation, we set ΠL(q) = ΠL(e, q).
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a solution, i.e. there exists a pair (e′, q′) satisfying (17) and (18) such that ΠL(q′)−e′ > ΠL(q∗)−e∗.

From the last inequality it immediately follows that VL(e′, q′, 0) > VL(e∗, q∗, 0). If the constraint

(17) is not binding, so that VH(e′, q′, 0) < V A
H , the deviation (e′, q′) violates Definition 2 and

(eL, qL) = (e∗, q∗) cannot support an intuitive separating equilibrium, contrary to the assump-

tion. Therefore, (17) must be binding so that VH(e′, q′, 0) = V A
H . Then, one can find in a small

neighbourhood of q′ a quantity q′′ such that VL(e′, q′′, 0) > VL(e∗, q∗, 0) and VH(e′, q′′, 0) < V A
H ,

so that the deviation (e′, q′′) violates Definition 2 and the equilibrium cannot be intuitive contrary

to the assumption. In order to show the existence of q′′ one can argue as follows. By continu-

ity of ΠL there exists an open interval centred at q′, B = {q | |q − q′| < ε, ε > 0}, such that

VL(e′, q, 0) > VL(e∗, q∗, 0) for all q ∈ B; moreover, by strict quasi-concavity of ΠH there exists

q′′ ∈ B such that VH(e′, q′′, 0) < V A
H . In fact, note first that q′ can not be a minimum for VH(e′, q, 0)

since profits are unbounded from below. Hence q′ can either be a maximum for VH(e′, q, 0) or not

a maximum. If q′ is a maximum, then by strict quasi-concavity it is unique and the existence of q′′

follows immediately by the definition of maximum. If q′ is not a maximum, then by strict quasi-

concavity, VH(e′, q, 0) is either a strictly increasing or a strictly decreasing function of q in an open

interval centred at q′, and this is sufficient to show that q′′ exists. In conclusion, we have shown

that (e∗, q∗) is a solution to the maximization problem and this completes the proof of the lemma.

Q.E.D.

Proof of Proposition 1.

Let us first show that there exists a unique solution to equation (14) and that q∗ > mL. First

of all we know that VH(0, q, 0) = ΠH(0, q) + MH is continuous in q. By assumption (11), we have

VH(0,mL, 0) > V A
H . Moreover, let qc > mL be the competitive market quantity, i.e. a finite quantity

such that ΠL(qc) = 0. Then ΠH(0, qc) < 0 and VH(0, qc, 0) < MH < V A
H , since V A

H ≥ MH + DH .

Thus by continuity of VH , equation (14) has at least a solution in the interval ]mL, qc[. Finally,

uniqueness of the solution is established by showing that VH(0, q, 0), or equivalently ΠH(0, q), is

strictly decreasing for q in the interval ]mL, qc[. This is easily seen by noting that the profit function

is strictly quasi concave and that its maximum is mH < mL.
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Next, by Lemma 2, we have to show that (0, q∗) is a solution of the maximization problem,

i.e. ΠL(q∗) > ΠL(q) − e for all (e, q) 6= (0, q∗) satisfying (17) and (18). Let us first consider the

maximization problem with only the constraint (17) and separately consider the two cases (e, q)

with q > q∗ and (e, q) with q < q∗. If q > q∗ then q > mL and the profit function ΠL(q) is strictly

decreasing. Therefore, we have ΠL(q∗) > ΠL(q) so that ΠL(q∗) > ΠL(q)−e for all (e, q) with q > q∗.

Let us turn to the second case, i.e. (e, q) satisfying (17) with q < q∗. By definition of q∗, i.e. by

equation (14), the constraint (17) can be rewritten as follows

ΠH(e, q)− e+MH(e) ≤ ΠH(0, q∗) +MH

or

ΠH(0, q∗) + (MH −MH(e)) ≥ ΠH(e, q)− e.

Since monopoly profits are decreasing in costs, MH−MH(e) ≤ 0 for e ≥ 0, therefore if (e, q) satisfies

(17) it also satisfies

ΠH(0, q∗) ≥ ΠH(e, q)− e

or

[p(q∗)− θH ]q∗ ≥ [p(q)− θH(e)]q − e. (19)

Moreover, since q < q∗ and θH ≥ θH(e), it must be true that

(θH − θL)q∗ ≥ (θH(e)− θL)q (20)

Adding term by term the inequalities (19) and (20) yields

(p(q∗)− θL)q∗ > (p(q)− θL)q − e

or ΠL(q∗) > ΠL(q)− e for all (e, q) satisfying (17) with q < q∗.

In order to complete the proof we have to show that (0, q∗) also satisfies (18). Notice that, by

definition of q∗, we have

ΠH(0, q∗) +MH = MH(eA)− eA +DH(eA) (21)
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By definition of V A
H it must hold

MH(eA)− eA +DH(eA) ≥MH +DH (22)

Thus, (21) and (22) imply ΠH(0, q∗) ≥ DH and after simple manipulations

DL −DH ≥ DL −ΠH(0, q∗) (23)

Next, let us consider

ΠL(q∗)−ΠH(0, q∗) = (θH − θL)q∗

> (θH − θL)mL

= ML −ΠH(0,mL)

> ML −MH (24)

where the first inequality follows from q∗ > mL and the last inequality from MH > ΠH(0,mL). By

assumption (10), we have ML −MH ≥ DL −DH so that from (23) and (24) it follows

ΠL(q∗)−ΠH(0, q∗) > DL −ΠH(0, q∗)

and finally ΠL(q∗) > DL. This completes the proof of Proposition 1. Q.E.D.

Lemma 3 The incumbent’s strategy (et, qt) = (eP , qP ), with t = H,L, supports a pooling equilibrium

if and only if (eP , qP ) satisfies (15), (16) and eP ≥ e0, where e0 is the zero expected profit level of

investment defined by (5).

Proof of Lemma 3

Let (eP , qP ) satisfy (15) and (16) with eP ≥ e0. We have to show that it supports a pooling

equilibrium. Let us take the beliefs β̂(e, q) = β if (e, q) = (eP , qP ) and 1 otherwise, which are

consistent with Bayes rule, Definition 1.(iii). Given these beliefs, take the entrant’s strategy y(e, q) =

0 if (e, q) = (eP , qP ) and 1 otherwise. The incumbent’s strategy is optimal for type H. In fact, if

(e, q) 6= (eP , qP ) then y(e, q) = 1 and, by definition of V A
H , we have V A

H ≥ VH(e, q, y(e, q)) and finally,
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by (15), VH(eP , qP , 0) ≥ VH(e, q, y(e, q)). With a similar argument it is easily shown that (eP , qP )

is optimal for type L, so that the incumbent’s strategy satisfies Definition 1.(i). Let us show that

also the entrant’s strategy is optimal. If y(e, q) = 1, then (e, q) 6= (eP , qP ) and β̂(e, q) = 1, thus the

entrant expected profits are strictly positive. Vice versa, if at (e, q) the expected profits are strictly

positive then (e, q) 6= (eP , qP ), because β̂(eP , qP ) = β and eP ≥ e0 imply, by (5), non positive

entrant’s expected profits. Thus, (e, q) 6= (eP , qP ) and by the definition of y we have y(e, q) = 1 and

Definition 1.(ii) is satisfied.

Let us show the converse and suppose that (eH , qH) = (eL, qL) = (eP , qP ) supports a pooling

equilibrium. Then, by Definition 1.(iii), β̂(eP , qP ) = β and y(eP , qP ) = 0, because if y(eP , qP ) = 1

the pooling strategy would not be an optimal strategy for the incumbent. Therefore, the entrant

expected profits must be non positive, which means, by (5), that eP ≥ e0. Consider next the choice

of L. Since by Definition 1.(i) VL(eP , qP , 0) ≥ VL(0,mL, y(0,mL)) and since VL(0,mL, 0) is the

highest total profit, it must be y(0,mL) = 1 thus VL(eP , qP , 0) ≥ VL(0,mL, 1) = V A
L and (16) holds.

Consider the choice of type H. Since by Definition 1.(i) VH(eP , qP , 0) ≥ VH(eA,mA, y(eA,mA)) and

since VH(eA,mA, y(eA,mA)) ≥ V A
H then VH(eP , qP , 0) ≥ V A

H and (15) is satisfied. This completes

the proof of Lemma 3. Q.E.D.

Proof of Proposition 2.

Let us deal with two cases separately, qP < mL and qP ≥ mL. The case qP < mL is straightforward.

Indeed, a pooling equilibrium supported by the quantity qP cannot be intuitive because the deviation

q̃ = mL is equilibrium dominated for type H and strictly preferred by type L.

Next, turn to the case qP ≥ mL. Let (eP , qP ) be the pooling equilibrium strategy of the

incumbent. We show that there exists a deviation (0, q̃) which is equilibrium dominated for the H

type and strictly preferred to the equilibrium choice by the L type. Let q̃ > mL be defined by the

equality

ΠL(qP )−ΠL(q̃) = eP − ε (25)

where ε > 0 is arbitrarily close to zero so that eP−ε > 0. The quantity q̃ is well defined and q̃ > qP .10

10Let us consider the function of q, ΠL(q) − [ΠL(qP ) − eP + ε] and notice that by (16) the term in square brackets
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Let us consider the deviation (0, q̃) and show that it is strictly preferred to the equilibrium choice

by the L type. Indeed,

VL(0, q̃, 0)− VL(eP , qP , 0) = ΠL(q̃) +ML −ΠL(qP ) + eP −ML

= ΠL(q̃)−ΠL(qP ) + eP

= ε− eP + eP = ε > 0

where we used (25).

Before showing that the same deviation is equilibrium dominated for the H type let us derive

the following result.

ΠH(eP , qP )−ΠH(0, q̃) − ΠL(qP ) + ΠL(q̃) =

= −θH(eP )qP + θH q̃ + θLqP − θLq̃

= (θH − θL)(q̃ − qP ) + (θH − θH(eP ))qP > 0 (26)

where the second equality follows by adding and subtracting θHqP and the last inequality from

q̃ > qP . By (25) and (26) we have ΠH(0, q̃) − ΠH(eP , qP ) + eP < ε. Subtracting to both sides

MH(eP )−MH > 0 yields

ΠH(0, q̃) +MH −ΠH(eP , qP ) + eP −MH(eP ) < ε− [MH(eP )−MH ] (27)

where the LHS is the variation of type H total profits after the deviation (0, q̃), i.e.

VH(0, q̃, 0)− VH(eP , qP , 0) = ΠH(0, q̃) +MH −ΠH(eP , qP ) + eP −MH(eP ). (28)

(27) and (28) give

VH(0, q̃, 0)− VH(eP , qP , 0) < ε− [MH(eP )−MH ] < 0

where the last inequality follows from the fact that the term in square brackets is strictly positive

and ε can be taken arbitrarily close to zero. Therefore, we have shown that the deviation (0, q̃) is

is strictly positive. Clearly, for q = mL the function is strictly positive and at the perfectly competitive quantity, qc,

the above function is strictly negative since ΠL(qc) = 0. Thus, by continuity there exists q̃ satisfying (25) in the open

interval ]mL, qc[. Moreover, since for q > mL the profit function is strictly decreasing, q̃ is unique.
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equilibrium dominated for the H type. Since for any pooling equilibrium one can find a deviation

which is equilibrium dominated for the H type and strictly preferred by the L type, by Definition

2 there exists no pooling equilibrium satisfying the Intuitive Criterion and this completes the proof

of Proposition 2. Q.E.D.
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