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Lucrezia Reichlin ∗

European Central Bank, ECARES and CEPR

November 12, 2007

Abstract

This paper shows how large-dimensional dynamic factor models are suit-
able for structural analysis. We argue that all identification schemes em-
ployed in SVAR analysis can be easily adapted in dynamic factor models.
Moreover, the “problem of fundamentalness”, which is intractable in struc-
tural VARs, can be solved, provided that the impulse-response functions
are sufficiently heterogeneous. We provide consistent estimators for the
impulse-response functions, as well as (n, T ) rates of convergence. An
exercise with US macroeconomic data shows that our solution of the fun-
damentalness problem may have important empirical consequences.
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1 Introduction

Recent literature has shown that large-dimensional approximate (or generalized)

dynamic factor models can be used successfully to forecast macroeconomic vari-

ables (Forni, Hallin, Lippi and Reichlin, 2005, Stock and Watson, 2002a, 2002b,

Boivin and Ng, 2003, Giannone, Reichlin and Sala, 2005). These models assume

that each time series in the dataset can be expressed as the sum of two orthogonal

components: the “common component”, capturing that part of the series which

comove with the rest of the economy and the “idiosyncratic component” which

is the residual. The vector of the common components is highly singular, i.e.

is driven by a very small number (as compared to the number of variables) of

shocks (the “common shocks” or “common factors”). Indeed, evidence based on

different datasets points to the robust finding that few shocks explain the bulk of

dynamics of macro data (see Sargent and Sims, 1977 and Giannone, Reichlin and

Sala, 2002 and 2005). If the common component of the variable to be predicted is

large, a forecasting method based on a projection on linear combinations of these

shocks performs well because, while being parsimonious, it captures the relevant

comovements in the economy.

Here we argue that the scope of dynamic factor models goes beyond forecast-

ing. Our aim is to open the black box of these models and show how statistical

constructs such as factors can be related to macroeconomic shocks and their

propagation mechanisms.

We define macroeconomic shocks those structural sources of variation that are

cross-sectionally pervasive, i.e. that significantly affect most of the variables of

the economy, as opposed to idiosyncratic sources of variation, that are specific

to a single variable or a small group of variables, hence capturing both sectoral-

local dynamics (let us say ”micro” dynamics) and measurement error. Our aim is

identification of the macroeconomic shocks and their dynamic effect on macroe-
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conomic variables, whereas the idiosyncratic components are disregarded.

A key paper, in which the distinction between macroeconomic shocks and

idiosyncratic sources of variation is systematically exploited for macroeconomic

modeling is Sargent and Sims (1977), in which several models, both “Keyne-

sian” and “classical”, are reformulated as factor models with a small number of

macroeconomic shocks. More recent literature includes papers in which Dynamic

Stochastic General Equilibria (DSGE), augmented with measurement errors, are

estimated by maximum likelihood (augmenting a theory-based model with mea-

surement errors goes back to Sargent, 1989; see also Altug, 1989, Ireland, 2004

and the literature mentioned therein; for an explicit link to factor models see

Giannone, Reichlin and Sala, 2006, Boivin and Giannoni, 2006).

The approach we propose here is a combination of Structural vector Au-

toregression (SVAR) analysis and large-dimensional dynamic factor models. Pre-

cisely, the factor model is used to consistently estimate common and idiosyncratic

components of macroeconomic variables. Then we apply SVAR analysis to iden-

tify the relationship between common components and macroeconomic shocks.

Our approach differs from error-augmented DSGE models in that we estimate

the impulse-response functions of the macroeconomic variables to macroeconomic

shocks without imposing any theory-based dynamic restriction. It has a close

relationship to FAVAR models, in which a VAR is augmented with common

factors (see Bernanke, Boivin and Eliasz, 2005). The link between factor models,

FAVAR and VAR models has been studied in Stock and Watson (2005), who

show how SVAR techniques can be used in a factor-model context. However, our

analysis of the fundamentalness of the structural shocks in factor models, and

the consequent motivation for an autoregressive approximation (see below and

Section 3), is a distinctive feature of the present paper. An early work in which

a large factor model is used for structural analysis is Forni and Reichlin (1998);
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major differences with the present paper are the empirical focus and the proposed

estimation procedure.

To give a brief outline of the structure of the paper, suppose that we are in-

terested in key macroeconomic variables such as per-capita consumption, income

and investment, denoted by ct, yt and it (see our empirical exercise in Section 5).

The macrovariables ct, yt and it are embedded in a large macroeconomic dataset

(the number of variables in our exercise is 89), and modeled as a common com-

ponent, driven by structural macroeconomic shocks, plus an idiosyncratic com-

ponent (variable specific shocks and measurement error). Under fairly general

assumptions the common components can be estimated consistently (see Section

2).

The vector of the common components, call it χχχnt, has dimension n, the

number of variables in the dataset, and rank q, the number of macroeconomic

shocks (three in our exercise), and is therefore highly singular. A crucial step

in our analysis is the dynamic specification of χχχt as a (singular) vector autore-

gression driven by the macroeconomic shocks. This implies assuming that the

macroeconomic shocks are fundamental for the common components χχχnt. Sec-

tion 3 is dedicated to showing that the fundamentalness problem, a weakness of

SVAR analysis, finds a satisfactory solution within our approach (on the fun-

damentalness issue in SVAR models see Hansen and Sargent, 1991, Lippi and

Reichlin, 1993 and 1994 and, more recently, Chari, Kehoe and Mcgrattan, 2005,

Fernández-Villaverde, Rubio-Ramirez and Sargent, 2005, Giannone, Reichlin and

Sala, 2006). Non fundamentalness of structural shocks is a consequence—this is

the usual explanation—of the agents having an information set that is larger than

the econometrician’s. We argue that in large-dimensional factor models, in which

the number of observed variables is larger than the number of shocks (unlike in

SVAR models), such “superior information” can occur only by a fluke (on the
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importance of this feature for monetary models, see Bernanke and Boivin, 2003

and Giannone, Reichlin and Sala, 2002 and 2005).

Once the vector autoregressive specification for χχχnt has been motivated, we

show that all the identification techniques developed in SVAR analysis, such as

long-run or impact effects, can be successfully imported in the identification of

structural macroeconomic shocks within large-dimensional dynamic factor mod-

els. Like in SVAR analysis, the structural shocks are obtained by linearly trans-

forming the estimated residual vector vvvt, the key difference being that here the

number of shocks q is smaller than the number of variables. Lastly, we can go

back to the variables of interest and study their dynamic response to structural

macroeconomic shocks. Section 5 analyses an empirical example on US macroe-

conomic data which revisits the results of King, Plosser, Stock and Watson (1991)

in the light of our discussion on fundamentalness.

Section 4 studies consistency and rates of convergence for the estimators of

the shocks and the impulse response functions.

2 The Large-Dimensional Dynamic Factor Model

The dynamic factor model used in this paper is a special case of the generalized

dynamic factor model of Forni, Hallin, Lippi and Reichlin (2000) and Forni and

Lippi (2001). Such model, and the one used here, differs from the traditional

dynamic factor model of Sargent and Sims (1977) and Geweke (1977), in that the

number of cross-sectional variables is infinite and the idiosyncratic components

are allowed to be mutually correlated to some extent, along the lines of Cham-

berlain (1983), Chamberlain and Rothschild (1983) and Connor and Korajczyk

(1988). Closely related models have been recently studied by Stock and Watson

(2002a, 2002b), Bai and Ng (2002) and Bai (2003).

Denote by xxxT
n = (xit)i=1,...,n; t=1,...,T an n×T rectangular array of observations:
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Assumption 1. xxxT
n is a finite realization of a real-valued stochastic process

XXX = {xit, i ∈ N, t ∈ Z , xit ∈ L2(Ω,F , P )}

indexed by N × Z, where the n-dimensional vector processes

{xxxnt = (x1t · · · xnt)
′, t ∈ Z}, n ∈ N,

are stationary, with zero mean and finite second-order moments Γx
k = E[xxxntxxx

′
n,t−k],

k ∈ Z.

We assume that each variable xit is the sum of two unobservable components,

the common component χit and the idiosyncratic component ξit. The common

components are driven by q common shocks uuut = (u1t u2t · · · uqt)
′. Note that

q is independent of n (and small as compared to n in empirical applications).

Precisely, defining χχχnt = (χ1t . . . χnt)
′ and ξξξnt = (ξ1t . . . ξnt)

′:

xxxnt = χχχnt + ξξξnt

χχχnt = Bn(L)uuut,
(2.1)

where:

Assumption 2. uuut is a q-dimensional orthonormal white noise, Bn(L) is a nested

sequence of one-sided n × q absolutely summable matrix polynomials (infinite in

general). Moreover, there exist an integer r ≥ q, a nested sequence of n × r

matrices An and a one-sided absolutely summable r×q matrix polynomial (infinite

in general) N(L), such that

Bn(L) = AnN(L). (2.2)

Defining the r × 1 vector fff t as

fff t = N(L)uuut, (2.3)
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(2.1) can be rewritten in the static form

xxxnt = Anfff t + ξξξnt (2.4)

In the sequel, we shall use the term static factors to denote the r entries of

fff t, whereas the common shocks uuut will be also referred to as dynamic factors.

The common shocks uuut and Bn(L) are assumed to be structural sources of

variation and impulse-response functions respectively. Therefore model (2.1), as

specified in Assumptions 1 and 2 and the other assumptions below, is a structural

factor model.

By contrast, the static factors fff t, the matrix An and N(L) have no structural

interpretation and are not unique. For, if gggt = Gfff t, where G is r×r and invertible,

then xxxnt = [AnG
−1]gggt +ξξξnt, with gggt = [GN(L)]uuut, is another static representation

for xxxnt.

Assumption 3. (Orthogonality of common and idiosyncratic components) For

all n, the vector ξξξnt is stationary. Moreover, uuut is orthogonal to ξiτ , i ∈ N, t ∈

Z, τ ∈ Z.

The assumption of orthogonality between common and idiosyncratic compo-

nents has an economic justification. Interpreting the factor model as the joint

model of the economy and the statistical agency, under reasonable hypotheses

on the behavior of the statistical agency, the latter is orthogonal to the signal

captured, in our framework, by the common shocks (see Sargent, 1989 for a

discussion). Moreover, orthogonality between common and idiosyncratic compo-

nents ensures that the entries of Bn(L) can be interpreted as impulse-response

functions of the common shocks on the χ’a and on the variables xit themselves.

Some definitions are needed for the next two assumptions. Let Γχ
k be the k-

lag covariance matrix of χχχnt, and denote by µχ
j the j-th eigenvalue, in decreasing
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order, of Γχ
0 . Moreover, let Σχ(θ) and Σξ(θ) be the spectral density matrix of χχχnt

and ξξξnt respectively, and denote by λχ
j (θ) and λξ

j(θ) their eigenvalues as functions

of θ ∈ [−π π], in decreasing order.

To avoid heavy notation, indication of the dependence on n and T is kept

to a minimum. In particular, dependence on n of Γχ
k , µχ

j , etc., just defined, and

of other scalars and matrices defined below, is not made explicit. In the same

way, reference to T and n will be avoided for estimated scalars and matrices. For

example, the estimator of Γx
0 , the covariance matrix of xxxnt, is denoted by Γ̂x

0 .

Assumption 4. (Pervasiveness of common dynamic and static factors)

(a) As n → ∞ we have λχ
q (θ) → ∞ for θ almost everywhere in [−π π].

(b) There exists constants cj, cj, j = 1, . . . , r, such that cj > cj+1, j = 1, . . . , r−1,

and

0 < cj < lim inf
n→∞

n−1µχ
j ≤ lim sup

n→∞
n−1µχ

j ≤ cj

Assumption 5. (Non-pervasiveness of the idiosyncratic components) There ex-

ists a real L such that λξ
1(θ) ≤ L for any n ∈ N and θ a.e. in [−π π]. This

obviously implies that µξ
1 ≤ L for any n ∈ N, µξ

j being the j-th eigenvalue of Γξ
n0.

Assumption 5 includes the case in which the idiosyncratic components are mu-

tually orthogonal with an upper bound for the spectral densities (and therefore for

the variances). Mutual orthogonality is the usual condition in finite-dimensional

factor models. Assumption 3 relaxes such condition by allowing for a limited

amount of cross-correlation among the idiosyncratic components. Assumption 4

(pervasiveness of the common factors) implies that each of the common shocks

ujt affects (almost) all the variables xit, i ∈ N, with non-declining coefficients.

Some comments on our assumptions are in order:
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(I) The number q of dynamic factors and the components χit are identified. In

particular, a representation of the form (2.1)-(2.4) with a different number of

dynamic factors is not possible (see Forni and Lippi, 2001).

(II) Assumption 4(b) is necessary to identify r. In particular, a static represen-

tation of the common components χit with a different number of static factors is

not possible.

(III) We define the static and dynamic rank of fff t as the rank of, respectively,

its variance-covariance and spectral density matrix. By Assumption 4(a) the

dynamic rank of fff t is q for θ a.e. in [−π π]. Assumption 4(b) entails that, for n

sufficiently large, An has full rank r and that fff t has static rank r for any given t.

Thus, for any given t, the space spanned by χit, i ∈ N, coincides with the space

spanned by the static factors fjt, j = 1, . . . , r, and has therefore dimension r.

The following dynamic factor model has been often considered in the large-

dimensional factor-model literature (see Stock and Watson, 2002a, 2002b, 2005,

Bai and Ng, 2007, Forni, Hallin, Lippi and Reichlin, 2005):

χχχnt = Cn0fff
∗
t + Cn1fff

∗
t−1 + · · · + Cnsfff

∗
t−s, (2.5)

where fff∗
t is q-dimensional and the matrices C are n × q and nested, and that fff∗

t

has the VAR representation:

Θ(L)fff ∗
t = (1 − Θ1L − · · · − ΘhL

h)fff∗
t = uuut, (2.6)

where Θ(L) is q × q. Using the definitions

fff t = (fff∗′
t fff ∗′

t−1 · · · fff∗′
t−s)

′, An = (Cn0 Cn1 · · · Cns),

N(L) = (K(L) K(L)L · · · K(L)−1Ls)′,

where K(L) = (Θ(L)′)−1, we have fff t = N(L)uuut and

xxxnt = Anfff t + ξξξnt. (2.7)

The static rank of fff t is always q(s+1). However, in order for (2.7) to be a static

representation of the model it is necessary that An be full rank, and this depends

on the coefficients of the matrices Cnj:
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(i) If no restrictions among the coefficients of the matrices Cnj hold (assume for

example that they are independently drawn from the same distribution), then

(2.7) is a static representation of the model.

(ii) If restrictions hold, such that An is not full rank, then r < q(s + 1) and

obtaining a static representation requires further manipulation. For example,

assume that q = 1, s = 1, so that (2.5) can be written as χit = ci0ut + ci1ut−1. If

no restrictions hold among the c’s, then r = 2 and (2.7) is a static representation.

But if the restriction ci1 = aci0 holds, then r = 1, N(L) = 1+aL, ft = (1+aL)ut

and An = (c10 c20 · · · cn0)
′.

In any case, with or without restrictions, existence of a static representation

for model (2.5)-(2.6) is an immediate consequence of the following remark:

(R) Assume that χχχnt = Bn(L)uuut. Denoting by Xt the space spanned by χit, i ∈ N,

if Xt is finite dimensional, then χχχnt has a static representation χχχnt = AnN(L)uuut.

For, let r be the dimension of Xt, for a given t. Stationarity of χχχnt implies that

(i) r is independent of t, (ii) Xt has a stationary basis fff t = (f1t f2t · · · frt),

(iii) χit = aifff t with ai independent of t. As fff t ∈ Xt, χχχnt = Bn(L)uuut implies that

fff t can be represented as N(L)uuut.

Model (2.5)-(2.6) implies that the entries of N(L) are rational functions of L.

Conversely, assuming that the entries of N(L) are rational functions of L implies

that the model can be put in the form (2.5)-(2.6). This is fairly obvious. If φj(L)

is the least common multiple of the denominators of the entries in the j-th column

of N(L), then N(L) = N1(L)N2(L)−1, where N1(L) is a r × q moving average

and N2(L) is q × q with the polynomials φj(L)−1 on the main diagonal and zero

elsewhere. Thus the following is equivalent to assuming (2.5)-(2.6).

Assumption 6. The entries of N(L) are rational functions of L.
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Note that if Assumption 6 holds for the vector fff t, i.e. for a static representa-

tion, then it holds for all static representations.

Our last problem is a specification of N(L) which makes the model suitable

for identification and estimation of the shocks uuut. A standard solution is the

assumption that N(L) results from inversion of a VAR, that is

fff t −D1fff t−1 − · · · − Dmfff t−m = Ruuut,

where R is a r × q matrix, so that N(L) = (I − D1L − · · · − DmLm)−1. This

assumption implies, as shown in Proposition 2 below, that uuut is identified up to

a unitary matrix. However, the VAR specification also implies that uuut belongs

to the space spanned by present and past values of the variables χit, i.e. that uuut

is fundamental for the χ’s. This is the issue that will be thoroughly discussed in

the next section.

3 Fundamentalness of the Structural Shocks

3.1 Response heterogeneity, n large and fundamentalness

3.1.1 Let us begin by briefly recalling some basic notions on fundamental rep-

resentations of stationary stochastic vectors. Assume that the n-dimensional

stochastic vector µµµt admits a moving average representation, i.e. that there exist

a q-dimensional white noise vvvt and an n × q, one-sided, square-summable filter

K(L), such that

µµµt = K(L)vvvt. (3.8)

If vvvt belongs to the space spanned by present and past values of µµµt we say that

representation (3.8) is fundamental and that vvvt is fundamental for µµµt (the con-

dition defining fundamentalness is also referred to as the miniphase assumption;

see e.g. Hannan and Deistler, 1988, p. 25). With no substantial loss of generality

we can suppose that q ≤ n and that vvvt is full rank. Moreover, for our purpose,
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we can suppose that the entries of K(L) are rational functions of L and that the

rank of K(z) is maximal, i.e. q, except for a finite number of complex numbers.

Then (see e.g. Rozanov, 1967, Ch. 1, Section 10, and Ch. 2, p. 76):

(F) Representation (3.8) is fundamental if and only if the rank of K(z) is q for

all z such that |z| < 1.

Assuming that (3.8) is fundamental, all fundamental white-noise vectors zzzt

are linear transformations of vvvt, i.e. zzzt = Cvvvt (see Proposition 2 below). Non

fundamental white-noise vectors result from vvvt by means of linear filters that

involve the so-called Blaschke matrices (see e.g. Lippi and Reichlin, 1994).

A fundamental white noise naturally arises with linear prediction. Precisely,

the prediction error

wwwt = µµµt − Proj(µµµt|µµµt−1, µµµt−2, . . .)

is white noise and fundamental for µµµt. As a consequence, when estimating an

ARMA with forecasting purposes, the MA matrix polynomial is always chosen

to be invertible, which implies fundamentalness.

Fundamentalness plays also an important role for the identification of struc-

tural shocks in SVAR analysis. SVAR analysis starts with the projection of a

full rank n-dimensional vector µµµt on its past, thus producing an n-dimensional

full rank fundamental white noise wwwt. The structural shocks are then obtained

as a linear transformation Awwwt, the matrix A resulting from economic theory

statements, which is tantamount to assuming that the structural shocks are fun-

damental. Fundamentalness has here the effect that the identification problem

is enormously simplified. However, as pointed out in the literature mentioned in

the Introduction (see also Section 3.1.2 below), economic theory, in general, does

not provide support for fundamentalness, so that all representations that fulfill
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the same economic statements but are non fundamental are ruled out with no

justification.

Our main point is that the situation changes dramatically if structural analysis

is conducted assuming that n > q. Precisely, as we see below, non fundamental-

ness is a generic property for n = q, while it is non generic for n > q. Thus the

question “why assuming fundamentalness?”, which is legitimately asked when

n = q, is replaced by “why should we care about non fundamentalness?” when

n > q.

An easy and effective illustration can be obtained assuming that q = 1, that

the entries of K(L) = (K1(L) K2(L) · · · Kn(L))′ are polynomials whose degree

does not exceed s, so that K(L) is parameterized in Rn(s+1). In this case, if

n = q = 1, non fundamentalness translates into the condition that at least one

root of K1(z) has modulus smaller than unity. Continuity of the roots of K1(z)

implies that non fundamentalness is generic, i.e. that if it holds for a point κκκ in

the parameter space it holds also within a neighborhood of κκκ.

On the other hand, if n > q, by (F), non fundamentalness implies that the

polynomials Kj(z) have a common root. As a consequence, their coefficients must

fulfill n − 1 equality constraints (see e.g. van der Waerden, 1953, p. 83). Non

fundamentalness is therefore non generic.

3.1.2 The discussion above has a forceful macroeconomic counterpart. Let us

firstly adapt to our framework the classic permanent-income consumption model,

as used in Fernández-Villaverde, Rubio-Ramirez, Sargent and Watson (2006) to

illustrate non fundamentalness. With minor changes in notation:

ct = ct−1 + σu(1 − R−1)ut

yt − ct = −ct−1 + σuR
−1ut,

where ct is permanent consumption, yt is labour income, ut is a white-noise process

and R is a constant gross interest rate. The authors assume that the variable
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yt − ct, call it st, is observed by the econometrician whereas ct is not. From the

equations above we obtain

st − st−1 = σuR
−1(1 − RL)ut, (3.9)

so that, as R > 1, ut is not fundamental for st. Therefore the VAR for st (the

best the econometrician can do), which is just a univariate autoregression, would

produce an innovation which is not the structural shock ut. However, if the

econometrician observes ct, or yt, or the value of the consumer’s accumulated

assets, then ut becomes fundamental (p. 5). Precisely, ut can be recovered using

present and past values of st and another variable, whereas present and past

values of st alone are not sufficient.

This extremely simple example contains all the elements we need to motivate

fundamentalness of the structural shocks uuut for χχχnt.

1. As a rule non fundamentalness arises when the econometrician’s information

set is smaller than the agent’s (see Hansen and Sargent, 1980, 1991; also the

learning-by-doing example in Lippi and Reichlin, 1993, can be reformulated in

terms of information sets). In the permanent income model the agent observes

permanent income whereas the econometrician does not.

2. However if any additional variable zt = b(L)ut is observed, then, by proposition

(F), ut is fundamental for the singular vector (st zt)
′, unless b(R−1) = 0. For

example, if zt = α(ut −βut−1), then β 6= R is sufficient for fundamentalness of ut

for (st zt)
′.

3. In our framework, the agent still observes ct and st, while the econometrician

observes

x1t = st + ξ1t,

i.e. st plus measurement error. However, we also assume that x1t belongs to

a large dataset xit = χit + ξit, which is observed by the econometrician. The
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common components χit can be recovered using our large-dimensional factor-

model techniques. Moreover, assuming for simplicity that q = 1, like in the

permanent-income example, the unique structural shock ut is fundamental for

the vector of the common components, unless all the responses bi(L) fulfill the

extremely unlikely constraint bi(R
−1) = 0.

In general, if the variables χit are driven by q shocks, a macroeconomic model

that contains only q variables, suppose they are χjt, j = 1, . . . , q, cannot en-

sure fundamentalness of uuut, the reason being possible superior information of the

agents with respect to present and past values of χjt, j = 1, . . . , q. However,

the informational advantage of the agents disappears if the econometrician ob-

serves a large set of additional macroeconomic variables. The generating process

of χjt, j = q + 1, . . . , n, contains parameters that do not belong to the gener-

ating process of the first q, and viceversa. Therefore, with all likelihood, their

dynamic responses to uuut are sufficiently heterogeneous, with respect to the first

q, to prevent the rank reduction which is, by Proposition F, equivalent to non

fundamentalness.

3.1.3 Based on the discussion above we assume fundamentalness of uuut for χit,

i ∈ N.

Proposition 1. Under Assumptions 1, 2 and 4, fundamentalness of uuut for χit,

i ∈ N, is equivalent to left invertibility of N(L), i.e. to the existence of a q × r

filter G(L) such that G(L)N(L) = Iq. Moreover, under 1, 2, 3, 4 and 5, uuut

belongs to the space spanned by present and past values of xit, i = 1, . . . ,∞, i.e.

is fundamental for xit, i ∈ N.

Proof. If uuut is fundamental for χit, i ∈ N, then it is fundamental for fff t, i.e.

there exists a q × r filter G(L) such that uuut = G(L)fff t = G(L)N(L)uuut. As

uuut is a white noise, G(L)N(L) = Iq. Now assume that G(L)N(L) = Iq. As-

sumption 4 implies that A′
nAn is full rank for n sufficiently large. Setting,
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Sn(L) = G(L) (A′
nAn)

−1 A′
n, we have Sn(L)xxxnt = Sn(L)χχχnt + Sn(L)ξξξnt. Now

Sn(L)χχχnt = G(L) (A′
nAn)

−1
A′

nAnfff t = G(L)fff t = G(L)N(L)uuut = uuut.

Therefore uuut lies in the space spanned by present and past values of χχχnt. Moreover,

Sn(L)ξξξnt = G(L) (A′
nAn)

−1 A′
nξξξt converges to zero in mean square by assumptions

4 and 5. Q.E.D.

The proof above also shows that fundamentalness of uuut for χit, i ∈ N is

equivalent to fundamentalness of uuut for χχχnt for n sufficiently large. In view of

Proposition 1, our fundamentalness assumption will be formulated as follows:

Assumption 7. (Fundamentalness) There exists a q × r one-sided filter G(L)

such that G(L)N(L) = Iq.

Obviously, if Assumption 7 holds for a particular static representation then it

holds for all static representations.

Starting with representation (2.5)-(2.6), if no restrictions hold among the

coefficients of the matrices Cnj , we have Ñ (L) = (K(L) K(L)L · · · K(L)Ls)′,

which has left inverse (Θ(L) 0q · · · 0q). Thus, as we can obviously expect, no

restrictions implies “maximum heterogeneity” of the responses to the structural

shocks and therefore fundamentalness. To see the effect of restrictions consider

again the example with q = 1 and χit = ci0ut + ci1ut−1 (see Section 2). If the

restriction ci1 = aci0 holds we have r = 1 and N(L) = 1+aL. In this extreme case

Assumption 7, i.e. |a| < 1, is no less arbitrary as the fundamentalness assumption

in VAR analysis. When restrictions hold but r > q, Assumption 7 rules out lower

dimensional subsets of parameter space.

To introduce our last assumption, a VAR specification for fff t, let us consider

the orthogonal projection of fff t on the space spanned by its past values:

fff t = Proj(fff t | fff t−1, fff t−2, . . . , ) + wwwt, (3.10)
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where wwwt is the r-dimensional vector of the residuals. Under our assumptions,

wwwt has rank q. Moreover, by the same argument used to prove Proposition 2

(see the next subsection), Assumption 7 implies that wwwt = Ruuut, where R is a

maximum-rank r × q matrix.

To get some insight in the orthogonal projection (3.10), consider again repre-

sentation (2.5)-(2.6) with no restrictions. The static representation of the model

has r = q(s + 1) and

fff t = (K(L) K(L)L · · · K(L)Ls)uuut.

In particular, assuming that m ≤ s, fff t has the AR(1) representation




fff ∗
t

fff ∗
t−1
...

fff∗
t−s




=




Θ1 Θ2 · · · Θs−1 Θs

Iq 0q · · · 0q 0q

0q Iq · · · 0q 0q

0q 0q · · · Iq 0q







fff ∗
t−1

fff ∗
t−2
...

fff ∗
t−s−1




+




Iq

0q
...
0q




uuut

where Θj = 0q if j > m. If m > s the order of the VAR is higher (but still finite).

Joining this observation with the usual approximation argument, a specifica-

tion of fff t as

fff t = D1fff t−1 + · · · + Dhfff t−h + Ruuut, (3.11)

even with h very small, does not seem to cause a dramatic loss of generality. In

the sequel we will adopt the VAR(1) specification:

Assumption 7′. (Fundamentalness: VAR(1) specification) The r-dimensional

static factors fff t admit a VAR(1) representation

fff t = Dfff t−1 + Ruuut (3.12)

where D is r × r and R is a maximum-rank matrix of dimension r × q.

Under (3.12),

χχχnt = Bn(L)uuut = An(I − DL)−1Ruuut. (3.13)
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Note that assuming (3.12), or (3.11), is independent of the particular static factors

we choose. For, let gggt = Gfff t, where G is r × r and invertible, be another basis

in the space spanned by the χit’s. If fff t fulfills (3.12), then gggt = [GDG−1]gggt−1 +

[GR]uuut.

A convenient alternative formulation of Assumption 7′ is

Assumption 7′′. The r-dimensional static factors fff t admit a VAR(1) represen-

tation

fff t = Dfff t−1 + εεεt (3.14)

where D is r × r and εεεt is a white noise of rank q.

3.2 Alternative fundamental representations

Our next result shows that ifχχχnt = Cn(L)vvvt is a given fundamental representation,

then uuut can be obtained from vvvt my means of a static rotation.

Proposition 2. Consider the common components of model (2.1)

χχχnt = Bn(L)uuut. (3.15)

under Assumptions 1 through 7. If

χχχnt = Cn(L)vvvt (3.16)

for any n ∈ N, where the matrices Cn(L) are nested and vvvt is a q-dimensional

fundamental orthonormal white noise vector, then representation (3.16) is related

to representation (3.15) by

uuut = Hvvvt

Bn(L) = Cn(L)H ′,

where H is a q × q unitary matrix, i.e. HH ′ = Iq.
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Proof. Projecting uuut entry by entry on the linear space V−
t spanned by present

and past values of vht, h = 1, . . . , q we get

uuut =
∞∑

k=0

Hkvvvt−k + rrrt,

where rrrt is orthogonal to vvvt−k, k ≥ 0. Now consider that V−
t and the space

spanned by present and past values of χit, i ∈ N, call it X−
t , are identical,

because the entries of χχχt−k, k ≤ 0, belong to V−
t by equation (3.16), while the

entries of vvvt−k, k ≤ 0, belong to X−
t by assumption. The same is true for X−

t

and the space spanned by present and past values of uht, i = 1, . . . , q, call it U−
t ,

so that U−
t = V−

t . Hence rrrt = 0. Moreover, serial non-correlation of the vht’s

imply that
∑∞

k=1 Hkvvvt−k is the projection of uuut on V−
t−1, which is zero because

V−
t−1 = U−

t−1. It follows that uuut = H0vvvt. Orthonormality of uuut implies that H0 is

unitary H0H
′
0 = I. QED

4 Identification and Estimation

4.1 Variables of interest, identification

Proposition 2 has the consequence that structural analysis in large-dimensional

factor models can be carried on along the same lines of standard SVAR analysis.

Precisely:

(A) We select the variables of interest, the first m with no loss of generality.

Usually m = q.

(B) We determine a q-dimensional vector vvvt, which is fundamental for χit, i ∈ N,

and the corresponding representation χχχmt = Cm(L)vvvt.

(C) We assume that economic theory implies a set of zero and sign restric-

tions that uniquely determines the structural impulse-response function Bm(L)

(just identification), i.e. that economic theory identifies a rotation H such that

Bm(L) = Cm(L)H ′ and uuut = Hvvvt.
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(D) We construct a consistent estimator B̂m(L) which is consistent with rate

max
(

1√
n
, 1√

T

)
.

Assuming that the variables of interest have been selected, let us concentrate

on step B. Denote by W χ the n× r matrix whose j-th column is the normalized

eigenvector of Γχ
0 :

W χ′Γχ
0 = MχW χ′, (4.17)

where Mχ is the r × r diagonal matrix having µχ
j as entry (j, j). Then define

gggt =
1√
n

W χ′χχχnt. (4.18)

The entries of gggt are the first r (non-normalized) principal components of χχχnt.

Assumption 4(b) implies that for n large enough gggt is a basis for the space Xt,

thus a vector of static factors. A fundamental representation for χχχmt is now easily

obtained:

(i) By Assumption 7′′, gggt = Dgggt−1+εεεt, where, using Γg
k = E(gggtggg

′
t−k) = 1

n
W χ′Γχ

k W χ,

D = Γg
1(Γ

g
0)

−1 = W χ′Γχ
1W χ

(
Mχ

n

)−1

, (4.19)

(ii) Setting Γε = E(εεεtεεε
′
t), we have

Γε = Γg
0 −DΓg

0D
′ =

Mχ

n
− D

Mχ

n
D′. (4.20)

(iii) Now let µε
j , j = 1, . . . , q, be the j-th eigenvalue of Γε, in decreasing order, M

the q×q diagonal matrix with
√

µε
j as its (j, j) entry, K the r×q matrix with the

corresponding normalized eigenvectors on the columns. Defining vvvt = M−1K ′εεεt

and K = KM,

χχχmt = Qm(I − DL)−1Kvvvt =

( ∞∑

h=0

QmDhK
)

vvvt = Cm(L)vvvt, (4.21)

where, using (4.17) and defining Im = (Im 0m,n−m)′ (the n×m matrix with zero

on the last n − m rows and Im on the first m rows),

Qm = E(χχχmtggg
′
t)[E(gggtggg

′
t)]

−1 =
√

nI ′
mW χ. (4.22)
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Note that gggt, Qm, D, M, K and vvvt, all depend on n. Note also that vvvt is

fundamental for gggt, i.e. for all the χ’s, not necessarily for χχχmt. In other words, vvvt

can be linearly recovered using contemporaneous and past values of all the χ’s,

not necessarily the first m of the χ’s (see Section 5.3 on this point).

The proof of our consistency result will need that the first q eigenvalues of

the matrix Γε be distinct and asymptotically bounded away from zero (like the

eigenvalues of Γχ
0/n, see Assumption 4 (b)).

Assumption 8. There exists constants di and di, i = 1, . . . , q, such that di >

di+1, i = 1, . . . , q − 1 and

0 < di < lim inf
n→∞

µε
i ≤ lim sup

n→∞
µε

i < di

Let us now briefly discuss Step C. The assumption of just identification can

be formalized as follows:

(i) Start with any representation χχχmt = S1(I − S2L)−1S3ssst = S(L)ssst, where ssst is

fundamental for the χ’s.

(ii) The restrictions implied by economic theory determine a rule, i.e. a function

F , associating a unitary q × q matrix with any triple S1, S2, S3, such that

Bm(L) = S(L)F (S1, S2, S3)
′, uuut = F (S1, S2, S3)ssst.

In particular, setting H = F (Qm,D,K), we have Bm(L) = Cm(L)H ′, uuut = Hvvvt.

4.2 Estimation

Let us start by some definitions and notation:

(I) Γ̂x
k = 1

T

∑T
h=k+1 xxxntxxx

′
nt−k,

(II) µ̂x
j the j-th eigenvalue of Γ̂x

0,

(III) M̂x the r × r diagonal matrix with µ̂x
j as its entry (j, j),
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(IV) Ŵ x the n× r matrix with the corresponding normalized eigenvectors on the

columns.

The main motivation for using the static factors gggt, as defined in (4.18), is

that gggt can be approximated in probability by the sample principal components

of xxxnt:

ĝggt =
1√
n

Ŵ x′
xxxt.

However, our consistency proof is not based on this result. Rather, we will directly

deal with Q̂m, D̂ and K̂, which are defined like Qm, D and K, respectively, with

Γχ
k , Mχ and W χ replaced by Γ̂x

k, M̂x and Ŵ x respectively. Therefore we can define

Ĉ(L) = Q̂m(I − D̂L)−1K̂, Ĥ = F (Q̂m, D̂, K̂) and the estimated impulse-response

function B̂m(L) = Ĉm(L)Ĥ ′. In the Appendix, under an additional technical

assumption, we prove the following result:

Proposition 3. For all k ≥ 0, i = 1, . . . ,m, j = 1, . . . , q,

|bij,k − b̂ij,k| = Op

(
max

(
1√
n

,
1√
T

))
. (4.23)

In Section 5 we consider a case of partial identification, in which m = q = 3.

The restrictions allow identification of the third column of B3(L), call it B3,3(L),

i.e. the entries corresponding to the third common shock, but not of the whole

B3(L). Quite obviously, taking as F any one of the infinite functions fulfilling

the restrictions, (4.23) can be applied to B3,3(L).

In conclusion, (4.23) applies with just or partial identification. Overidentifi-

cation is left to further research.

5 Empirical application

We illustrate our structural factor model by revisiting an influential work in SVAR

literature, namely the three-dimensional SVAR estimated in King, Plosser, Stock
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and Watson (1991) (KPSW henceforth). The variables are US per-capita output,

investment and consumption, partial identification of the permanent shock and

corresponding impulse-response functions being achieved by imposing long-run

neutrality of the remaining shocks on output.

Our exercise is based on a panel of macroeconomic series including the three

series used by KPSW, with the same sampling period. As we see below, three

common shocks, i.e. q = 3, are consistent with our dataset. Moreover, upon

estimation of the common components, the variance of the idiosyncratic compo-

nents of output and investment accounts for about 15% of their total variance,

the fraction falling to 10% for consumption. Thus, using the same identifica-

tion restrictions applied in KPSW, allows a sensible and interesting comparison

between our impulse-response functions and those found in KPSW.

5.1 The data

The data set is quarterly and is based on the FRED II database, Federal Reserve

Bank of St. Louis, and Datastream. The original data of KPSW are available

on Mark Watson’s home page. We collected 89 series, including data from NIPA

tables, price indeces, productivity, industrial production indeces, interest rates,

money, financial data, employment, labor costs, shipments, and survey data. A

larger n would be desirable, but we were constrained by both the scarcity of series

starting from 1949 (like in KPSW) and the need of balancing data of different

groups. In order to use Datastream series we were forced to start from 1950:1

instead of 1949:1, so that the sampling period is 1950:1 - 1988:4. Monthly data are

taken in quarterly averages. All data have been transformed to reach stationarity

according to the ADF(4) test at the 5% level. Finally, the data were taken in

deviation from the mean as required by our formulas, and divided by the standard

deviation to make results independent of the units of measurement. A complete

description of each series and the related transformations is available on request.
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5.2 The choice of r and the number of common shocks

As a first step we have to set r and q. Let us begin with r. We computed the

six consistent criteria suggested by Bai and Ng (2002) with r = 1, . . . , 30. The

criteria ICp1 and ICp3 do not work, since they do not reach a minimum for r < 30;

ICp2 has a minimum for r = 12. To compute PCp1, PCp2 and PCp3 we estimated

σ̂2 with r = 15 since with r = 30 none of the criteria reaches a minimum for

r < 30. PCp1 gives r = 15, PCp2 gives r = 14 and PCp3 gives r = 20. Below

we report results for r = 12, r = 15 and r = 18, with more detailed statistics for

r = 15. With r = 15, the common factors explain on average 79.7% of the total

variance.

Regarding the variables of interest, the common factors explain 85.6% of total

variance for output, 84.4% for investment and 89.4% for consumption. Bai and

Ng estimators were criticized for easily overestimating the number of static factors

when the idiosyncratic terms are strongly correlated. As a robustness check we

therefore repeated our exercise with r = 9. Result are available upon request.

The main conclusions do not change.

Regarding q, the criterion proposed by Hallin and Lǐska (2007), non-log cri-

terion IC1, for different choices of the parameters and the penalty functions,

produces values of q within the range 2-5. Thus the value q = 3, necessary to

carry on the comparison between our results and KPSW’s, does not conflict with

available evidence.

5.3 Fundamentalness

We are interested in the impulse-response functions of per-capita output, invest-

ment and consumption, that is, with no loss of generality, in the matrix C3(L)H ′.

The question here is that although Cn(L), which is n × 3, is fundamental by

assumption for n sufficiently large, the 3 × 3 matrix C3(L) is not necessarily
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fundamental1. In other words, the common shocks can be recovered using con-

temporaneous an past values of the n common components, but we do not know

whether the first three are sufficient.

Figure 1 plots the moduli of the two smallest roots of the above determinant

as a function of r, for r varying over the range 3-30. Note that for r = 3 all the

roots must be larger than unity in modulus, since they stem from a three-variate

VAR. This is in fact the case for r = 3 and r = 4, but for r ≥ 5 the smallest

root declines and lies always within the unit circle. For r ≥ 22 even the second

smallest root becomes smaller than unity in modulus.

Figure 1: The moduli of the first and the second smallest roots as functions
of r
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Figure 2 reports the distribution of the modulus of the smallest root for r = 15,

across 1000 replications for a standard block bootstrap on the x’s; the length of

the blocks was chosen to be equal to 22 quarters, large enough to retain the

cyclical information in the series. The mean value is 0.66. The percentage of

estimated values larger than one in modulus is 14.5.

Bootstrapping results strongly favour non fundamentalness of the structural

impulse-response function C3(L)H ′. This implies that C3(L)H ′ cannot be ob-

tained by estimating a VAR for the three-dimensional vector (χ1t χ2t χ3t). As

1Note that fundamentalness of C3(L) and of C3(L)H ′ are equivalent.
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Figure 2: Frequency distribution of the modulus of the smallest root
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we argue in Section 5.4, non fundamentalness of C3(L) explains some important

differences between our structural impulse-response function and KPSW’s.

5.4 Impulse-response functions and variance decomposi-

tion

Coming to the impulse-response functions, as anticipated above we impose long-

run neutrality of two shocks on per-capita output, like in KPSW. This is sufficient

to reach a partial identification, i.e. to identify the long-run shock and its response

functions on the three variables.

Figure 3: The impulse response function of the long-run shock on output for
r = 12, 15, 18
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Figure 3 shows the response functions of per capita output for r = 12, 15, 18.
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The general shape does not change that much with r. The productivity shock has

positive effects declining with time on the output level. The response function

reach its maximum value after 6-8 quarters with only negligible effects after two

years. It should be observed that this simple distributed-lag shape is different

from the one in KPSW, where there is a sharp decline during the second and the

third year, which drives the overall effect back to the impact value.

Figure 4: The impulse response function of the long-run shock on output,
consumption and investment for r = 15
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In Figure 4 we concentrate on the case r = 15. We report the response

functions with 90% confidence bands for output, consumption and investment

respectively (confidence bands are obtained by means of the block bootstrap

technique mentioned above). The shapes are similar for the three variables, with

a positive impact effect followed by important, though declining, positive lagged

effects.

Table 1 reports the fraction of the forecast-error variance attributed to the

permanent shock for output, consumption and investment at different horizons.

For ease of comparison we report the corresponding numbers obtained with the

(restricted) VAR model and reported in Table 4 of KPSW.

At horizon 1, our estimates are smaller. The difference is important for con-

sumption: only 0.30 according to the factor model as against 0.88 according to

the KPSW model. But at horizons larger than or equal to 8 quarters our esti-

mates are greater, the difference being very large for investment: at horizon 20 (5

years) the permanent shock explains 46% of its forecast error variance according

to KPSW as against 86% with the factor model. Thus a typical puzzle of the

VAR literature, the finding that technological and other supply shocks explain

a small fraction of investment variations even in the medium-long run, seems to

find a solution in our factor model.

As the variance of the idiosyncratic components of output, investment and

consumption does not exceed 15% of their total variance (see Section 5.2), non

fundamentalness of the structural shocks for (χ1t χ2t χ3t), as opposed to funda-

mentalness of KPSW’s shocks for (x1t x2t x3t), appears to play a major role in

explaining such different dynamic profiles.
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Table 1: Fraction of the forecast-error variance due to the long-run shock

Dynamic factor model KPSW vector ECM

Horizon Output Cons. Inv. Output Cons. Inv.
1 0.37 0.30 0.07 0.45 0.88 0.12

(0.20) (0.26) (0.16) (0.28) (0.21) (0.18)

4 0.57 0.77 0.42 0.58 0.89 0.31
(0.18) (0.18) (0.17) (0.27) (0.19) (0.23)

8 0.78 0.87 0.72 0.68 0.83 0.40
(0.13) (0.13) (0.13) (0.22) (0.18) (0.18)

12 0.86 0.90 0.80 0.73 0.83 0.43
(0.09) (0.11) (0.11) (0.19) (0.18) (0.17)

16 0.89 0.91 0.83 0.77 0.85 0.44
(0.08) (0.11) (0.10) (0.17) (0.16) (0.16)

20 0.91 0.92 0.86 0.79 0.87 0.46
(0.07) (0.12) (0.09) (0.16) (0.15) (0.16)

6 Conclusions

We have argued that dynamic factor models are suitable for structural macroe-

conomic modeling and provide an interesting alternative to structural VARs.

As we have shown, a large panel with a small number of common shocks

allow the econometrician to recover the structural shocks under a reasonable

assumption on the heterogeneity of the impulse-response functions. Thus the

fundamentalness problem, which has no solution in the VAR framework, where

m shocks must be recovered using present and past values of m variables, becomes

tractable when the number of variables exceeds the number of shocks.

Our empirical application revisits a SVAR estimated in King, Plosser, Stock

and Watson (1991) for US output, investment and consumption. Using a large

panel including such series, we estimate a factor model with three common shocks

and apply KPSW’s identification scheme. Two important outcomes are:
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1. The three-dimensional impulse-response function corresponding to output,

investment and consumption, implicit in our estimated factor model, is non fun-

damental, an important difference with respect to the VAR estimated in KPSW.

2. Comparing responses of the permanent shock in KPSW and the factor model,

we find that long-run effects are much more important in the second. In particu-

lar, the long-run response of investment in the factor model is almost two times

the one estimated in KPSW.
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Appendix

The following statement is proved below.

Proposition P.

(A) ‖Q̂m − QmĴr‖ = Op

(
max

(
1√
n
, 1√

T

))
,

(B) ‖D̂k − ĴrD
kĴr‖ = Op

(
max

(
1
n
, 1√

T

))
, for all k ≥ 0,

(C) ‖K̂ − ĴrKĴq‖ = Op

(
max

(
1
n
, 1√

T

))
,

where Ĵr and Ĵq are diagonal matrices, r × r and q × q respectively, depending

on n and T , whose diagonal entries are equal either to 1 or −1.

Roughly speaking, Proposition P states that Q̂m, D̂k, K̂ approximate Qm,

Dk, K respectively, the reason for the presence of Ĵr and Ĵq being that we do

not want to establish a rule to decide the sign of the eigenvectors of Γ̂x
0 and Γ̂ε.

However,

χχχmt = Cm(L)vvvt =
[
QmĴr

] (
I −

[
ĴrDĴr

]
L
)−1 [

ĴrKĴq

] [
Ĵqvvvt

]

= Q̌m(I − ĎL)−1Ǩv̌vvt = Čm(L)v̌vvt,

which is obviously a fundamental representation. As a consequence, setting Ȟ =

F (Q̌m, Ď, Ǩ), we have

Bm(L) = Cm(L)H ′ = Čm(L)Ȟ ′, (6.24)

(see (ii) at the end of Section 4.1). On the other hand, Proposition P implies that

‖Ĥ − Ȟ‖ = ‖F (Q̂m, D̂, K̂) − F (Q̌m, Ď, Ǩ)‖ = Op

(
max

(
1

n
,

1√
T

))
,

this being a standard result under reasonable regularity assumptions for F (the

usual identification schemes, with zero first-impact or long-run restrictions, pro-

duce functions F with elementary analytic entries). This result, combined with

(6.24), implies Proposition 3.

To prove Proposition P we need an additional technical assumption.
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Assumption 9. Denote by γx
ij,k and γ̂x

ij,k the entries of Γx
k , Γ̂x

k respectively. We

require that
√

T‖γ̂x
k − γx

k‖ = Op(1) uniformly in n, i.e. that given η > 0 there

exists δ(η) such that

P(
√

T |γx
ij,k − γ̂x

ij,k| > δ(η)) < η,

for all i ∈ N and j ∈ N, k = 0, 1.

Moreover, we will make use of the following inequality, which is due to H.

Weyl. If A is a symmetric matrix we denote by µj(A) the j-th eigenvalue of A in

decreasing order. Given a matrix B, ‖B‖ denotes the spectral norm of B, thus

‖B‖ =
√

µ1(BB′), which is the euclidean norm if B is a row matrix. Let A and

B be two s × s symmetric matrices. Then (see e.g. Stewart and Sun, 1990, p.

203, Corollary 4.10):

|µj(A + B) − µj(A)| ≤
√

µ1(B2) = ‖B‖, j = 1, . . . , s. (6.25)

Lemma 1. Denoting by Im the n × m matrix having the identity matrix Im in

the first m rows and 0 elsewhere (see Section 4.1),

(i) 1
n
‖Γ̂x

k − Γx
k‖ = Op

(
1√
T

)
, k = 0, 1.

(ii) 1√
n
‖I ′

m

(
Γ̂x

0 − Γx
0

)
‖ = Op

(
1√
T

)
for any (fixed) m.

(iii) 1
n
‖Γ̂x

k − Γχ
k‖ = Op

(
max

(
1
n
, 1√

T

))
, k = 0, 1.

(iv) 1√
n
‖I ′

m

(
Γ̂x

0 − Γχ
0

)
‖ = Op

(
max

(
1√
n
, 1√

T

))
for any (fixed) m.

Proof. We have

µ1

(
(Γ̂x

k − Γx
k)(Γ̂

x
k − Γx

k)
′
)
≤ trace

(
(Γ̂x

k − Γx
k)(Γ̂

x
k − Γx

k)
′
)

=
n∑

i=1

n∑

j=1

(γ̂x
kij−γx

kij)
2 = Op

(
n2

T

)
,

where the last equality follows from Assumption 9. This proves (i). Similarly, we

have

trace
(
I ′

m

(
Γ̂x

0 − Γx
0

)2
Im

)
=

m∑

i=1

n∑

j=1

(γ̂x
0ij − γx

0ij)
2 = Op

(
n

T

)
.
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Statement (ii) follows. As for (iii), observe that Γ̂x
k − Γχ

k = Γ̂x
k − Γx

k + Γξ
k by

Assumption 3, so that 1
n
‖Γ̂x

k −Γχ
k‖ ≤ 1

n
‖Γ̂x

k −Γx
k‖+ 1

n
‖Γξ

k‖. The first term on the

RHS is Op

(
1√
T

)
by statement (i), whereas the second is bounded by 1

n
µξ

1, which

is O
(

1
n

)
by Assumption 5. Statement (iv) is obtained in a similar way, using (ii)

instead of (i) and the upper bound 1√
n
µξ

1 instead of 1
n
µξ

1. Q.E.D.

Lemma 2.

(i)
µ̂x

j

n
− µ

χ
j

n
= Op

(
max

(
1
n
, 1√

T

))
for any j.

(ii) There exists n̄ such that, for all n ≥ n̄, (Mχ

n
) is invertible.

(iii) For any n ≥ n̄ and η > 0, there exists τ (η, n) such that, for T ≥ τ (η, n),

(M̂x

n
) is invertible with probability larger than 1 − η; moreover, if (M̂x

n
)−1 exists

for n = n∗ and T = T ∗, it exists for all n > n∗ and T > T ∗.

(iv) ‖Mχ

n
‖ and ‖

(
Mχ

n

)−1
‖, which depend on n, are O(1); ‖M̂x

n
‖ and ‖

(
M̂x

n

)−1
‖,

which depend on n and T , are Op(1).

Proof. Setting A = Γχ
0 , B = Γ̂x

0 − Γχ
0 and applying (6.25) we get 1

n
|µ̂x

j − µχ
j | ≤

1
n
‖Γ̂x

0 −Γχ
0‖, which is Op

(
max

(
1
n
, 1√

T

))
by Lemma 1 (iii). As for (ii), by Assump-

tion 4 (b) there exists n̄ such that, for n ≥ n̄, µ
χ
r

n
> cr > 0, so that det

(
Mχ

n

)
6= 0.

Turning to (iii), setting A = Γx
0 , B = Γ̂x

0−Γx
0 and applying Weyl inequality we get

1
n
|µ̂x

r −µx
r | ≤ 1

n
‖Γ̂x

0 −Γx
0‖, which is Op

(
1√
T

)
by Lemma 1 (i). Now, µx

r ≥ µχ
r , since

Γξ
0 is positive semi-definite, so that, for n ≥ n̄, µx

r

n
> cr > 0. Hence det

(
M̂x

n

)

is bounded away from zero in probability as T → ∞. The last part of state-

ment (iii) follows from the fact that the rank of the observation matrix xxxT
n , and

therefore the rank of Γ̂x
0, is non-decreasing in n and T . As for (iv), observe that

‖Mχ

n
‖ =

µχ
1

n
and ‖

(
Mχ

n

)−1
‖ = n

µ
χ
r
, which are asymptotically bounded by c1 and 1

cr

by Assumption 4 (b). Boundedness in probability of ‖M̂x

n
‖ and ‖

(
M̂x

n

)−1
‖ then

follow from statement (i). Q.E.D.

Lemma 3.

(i) ‖W χ′Ŵ x M̂x

n
− M

n
W χ′Ŵ x‖ = Op

(
max

(
1
n
, 1√

T

))
.
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(ii) ‖Ŵ x′W χW χ′Ŵ x − Ir‖ = Op

(
max

(
1
n
, 1√

T

))
.

(iii) There exist diagonal r×r matrices Ĵr, depending on n and T , whose diagonal

entries are equal to either 1 or −1, such that ‖Ŵ x′W χ−Ĵr‖ = Op

(
max

(
1
n
, 1√

T

))
.

Proof. We have ‖W χ′Ŵ x M̂x

n
− Mχ

n
W χ′Ŵ x‖ = ‖ 1

n
W χ′

(
Γ̂x

0 − Γχ
0

)
Ŵ x‖ ≤ 1

n
‖Γ̂x

0 −

Γχ
0‖. Statement (i) then follows from Lemma 1 (iii). As for (ii), set

a = Ŵ x′W χW χ′Ŵ x = Ŵ x′W χW χ′Ŵ x M̂x

n

(
M̂x

n

)−1
,

b = Ŵ x′W χ Mχ

n
W χ′Ŵ x

(
M̂x

n

)−1
= 1

n
Ŵ x′Γχ

0Ŵ x
(

M̂x

n

)−1
,

c = 1
n
Ŵ x′Γ̂x

0Ŵ
x
(

M̂x

n

)−1
= M̂x

n

(
M̂x

n

)−1
= Ir.

We have ‖a− c‖ ≤ ‖a− b‖+ ‖b− c‖. Both terms are Op

(
max

(
1
n
, 1√

T

))
, the first

by statement (i), the second by Lemma 1 (iii). Turning to (iii), let us denote by

ŵx
j and wχ

j the j-th column of Ŵ x and W χ respectively. By taking a single entry

of the matrix on the LHS of statement (i) we get

1

n

(
µ̂x

j − µχ
i

)
wχ′

j ŵx
i = Op

(
max

(
1

n
,

1√
T

))
,

i ≤ r, j ≤ r. Now, for j 6= i, 1
n

(
µ̂x

j − µχ
i

)
is bounded away from zero in

probability, since µχ
i and µχ

j are asymptotically distinct by Assumption 4 (b),

while µ̂x
j tends to µχ

j in probability by Lemma 2 (i). Hence the the off-diagonal

terms of Ŵ x′W χ are Op

(
max

(
1
n
, 1√

T

))
. Turning to the diagonal terms, let us

first observe that ŵx′
i W χW χ′ŵx

i = 1 + Op

(
max

(
1
n
, 1√

T

))
by statement (ii). But

ŵx′
i W χW χ′ŵx

i = (ŵx′
i wχ

i )
2
+

r∑

j=1
j 6=i

(
ŵx′

i wχ
j

)2
= (ŵx′

i wχ
i )

2
+ Op

(
max

(
1

n
,

1√
T

))
.

Hence (1 − |ŵx′
i wχ

i |) (1 + |ŵx′
i wχ

i |) = Op

(
max

(
1
n
, 1√

T

))
, so that 1 − |ŵx′

i wχ
i | =

Op

(
max

(
1
n
, 1√

T

))
. Q.E.D.

Proof of Proposition P (A). Set

a = QmĴr =
√

nI ′
mW χĴr, where Ĵr has been defined in Lemma 3 (iii),

b =
√

nI ′
mW χW χ′Ŵ x =

√
nI ′

mW χW χ′Ŵ x M̂x

n

(
M̂x

n

)−1
,

c =
√

nI ′
mW χ Mχ

n
W χ′Ŵ x

(
M̂x

n

)−1
= 1√

n
I ′

mΓχ
0 Ŵ x

(
M̂x

n

)−1
,
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d = 1√
n
I ′

mΓ̂x
0Ŵ

x
(

M̂x

n

)−1
=

√
nI ′

mŴ x = Q̂m.

Firstly observe that ‖
√

nI ′
mW χ‖ = ‖I ′

mAnΓ
f
0

(
Mχ

n

)−1
‖ is O(1), since ‖I ′

mAnΓ
f
0‖

is O(1) and ‖
(

Mχ

n

)−1
‖ is O(1) by Lemma 2 (iv). Hence we can apply Lemma

3 (iii) to get ‖a − b‖ = Op

(
max

(
1
n
, 1√

T

))
, and Lemma 3 (i) to get ‖b − c‖ =

Op

(
max

(
1
n
, 1√

T

))
. Finally, Lemma 1 (iv) ensures that ‖c−d‖ = Op

(
max

(
1√
n
, 1√

T

))
.

Q.E.D.

Proof of Proposition P (B). We have D̂ = 1
n
Ŵ x′Γ̂x

1Ŵ
x
(

M̂x

n

)−1
and ĴrDĴr =

1
n
ĴrW

χ′ΓχW χ
(

Mχ

n

)−1
Ĵr = 1

n
ĴrW

χ′Γχ
1W χĴr

(
Mχ

n

)−1
, where Ĵr has been defined

in Lemma 3 (iii). Set

a = D̂ = 1
n
Ŵ x′Γ̂x

1Ŵ
x
(

M̂x

n

)−1
,

b = 1
n
Ŵ x′Γχ

1 Ŵ x
(

M̂x

n

)−1
= 1

n
Ŵ x′W χW χ′Γχ

1W χW χ′Ŵ x
(

M̂x

n

)−1
,

c = 1
n
ĴrW

χ′Γχ
1W χĴr

(
M̂x

n

)−1
,

d = ĴrDĴr = 1
n
ĴrW

χ′Γχ
1W χ

(
Mχ

n

)−1
Ĵr = 1

n
ĴrW

χ′Γχ
1W χĴr

(
Mχ

n

)−1
.

By Lemma 1 (i) ‖a−b‖ is Op

(
1√
T

)
; by Lemma 3 (iii) ‖b−c‖ is Op

(
max

(
1
n
, 1√

T

))
;

by Lemma 2 (i) ‖c−d‖ is Op

(
max

(
1
n
, 1√

T

))
. This proves the statement for k = 1.

Observing that Ĵ 2
r = Ir, the extension to the case k > 1 is straightforward.

Q.E.D.

Lemma 4.

(i) ‖Γ̂ε−ĴrΓ
εĴr‖ = Op

(
max

(
1
n
, 1√

T

))
, where Ĵr has been defined in Lemma 3 (iii).

(ii) µ̂ε
j − µε

j = Op

(
max

(
1
n
, 1√

T

))
j = 1, . . . , r.

(iii) ‖M̂ −M‖ = Op

(
max

(
1
n
, 1√

T

))
.

(iv) M−1 exists for n sufficiently large and its norm is O(1) as n → ∞; moreover,

‖M̂M−1 − Iq‖ = Op

(
max

(
1
n
, 1√

T

))
.

(v) There exist diagonal q×q matrices Ĵq, depending on n and T , whose diagonal

entries are either equal to 1 or −1, such that ‖K ′ĴrK̂−Ĵq‖ = Op

(
max

(
1
n
, 1√

T

))
.

Proof. We have Γ̂ε = M̂x

n
− D̂ M̂x

n
D̂′ and ĴrΓ

εĴr = Ĵr

(
Mχ

n
− DMχ

n
D′
)
Ĵr = Mχ

n
−

ĴrDĴr
Mχ

n
ĴrD

′Ĵr. Statement (i) then follows from Lemma 1 (i) and Proposition
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P (B). As for (ii), notice first that the eigenvalues of ĴrΓ
εĴr are identical to

those of Γε. Hence setting A = Γε, B = Γ̂ε − ĴrΓ
εĴr and applying (6.25) we get

|µ̂ε
j−µε

j| ≤ ‖Γ̂ε−ĴrΓ
εĴr‖. Statement (ii) then follows from (i). Turning to (iii), we

have M̂2 −M2 =
(
M̂ −M

) (
M̂ + M

)
. As the second factor is asymptotically

bounded away from zero by Assumption 8, the result follows from statement (ii).

Statement (iv) follows from the fact that µε
q > dq > 0 for n sufficiently large by

Assumption 8 and statement (iii). Finally, result (v) is obtained following the

lines of Lemma 3, with Assumption 8 ensuring asymptotically distinct eigenvalues

instead of Assumption 4 (b). Q.E.D.

Proof of Proposition P (C). Let us denote by N̂ the diagonal matrix having

on the diagonal the smallest r − q eigenvalues of Γ̂ε and by K̂⊥ the r × (r − q)

matrix having on the columns the corresponding eigenvectors, so that Γ̂ε =

K̂M̂2K̂ ′ + K̂⊥N̂ K̂ ′
⊥. As µε

j = 0 for j > q by Lemma 4 (ii), the second term

is Op

(
max

(
1
n
, 1√

T

))
. Hence by Lemma 4 (i), ‖K̂M̂2K̂ ′ − ĴrKM2K ′Ĵr‖ =

Op

(
max

(
1
n
, 1√

T

))
, where Ĵr has been defined in Lemma 3 (iii). Postmultiplying

by K̂M−1, which is O(1) by Lemma 4 (iv), we get

‖K̂M̂2M−1 − ĴrKM2K ′ĴrK̂M−1‖ = Op

(
max

(
1

n
,

1√
T

))
.

The desired result is obtained by applying Lemma 4 (iv) and Lemma 4 (v) and

observing that ĴqM−1 = M−1Ĵq, where Ĵq has been defined in Lemma 4 (v).

Q.E.D.
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