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Abstract. In this paper we introduce three dynamic eigenvalue ratio estimators for the number of

dynamic factors. Two of them, the Dynamic Eigenvalue Ratio (DER) and the Dynamic Growth Ratio

(DGR) are dynamic counterparts of the eigenvalue ratio estimators (ER and GR) proposed by Ahn

and Horenstein (2013). The third, the Dynamic eigenvalue Difference Ratio (DDR), is a new one but

closely related to the test statistic proposed by Onatsky (2009). The advantage of such estimators is that

they do not require preliminary determination of discretionary parameters. Finally, a static counterpart

of the latter estimator, called eigenvalue Difference Ratio estimator (DR), is also proposed. We prove

consistency of such estimators and evaluate their performance under simulation. We conclude that both

DDR and DR are valid alternatives to existing criteria. Application to real data gives new insights on

the number of factors driving the US economy.
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1. Introduction

In the last ten-fifteen years, “approximate” or “generalized” dynamic factor models have

been applied quite successfully to the analysis of large panels of time series. Such data-

rich environments are a common feature of macroeconomics and finance, where a few

common shocks drive the comovements of many variables, so that information is scattered

through a large number of interrelated series. Early theoretical contributions are Forni

and Reichlin (1998), Forni et al. (2000, 2005), Forni and Lippi (2001), Stock and Watson

(2002a), Bai and Ng (2002, 2007), Bai (2003). Applications include forecasting (Stock

and Watson, 2002a, 2002b, Marcellino et al., 2003, Boivin and Ng 2006, D’Agostino

and Giannone, 2012), structural macroeconomic analysis (Bernanke and Boivin, 2003,

Bernanke et al., 2005, Giannone et al., 2006, Favero et al. 2005, Eickmeier 2007, Forni

et al., 2009, Forni and Gambetti, 2010), nowcasting and business cycle indicators (Forni

et al., 2001, Cristadoro et al. 2005, Giannone et al. 2008, Altissimo et al., 2010), the

analysis of financial markets (Corielli and Marcellino 2006, Ludvigson and Ng 2007, 2009,

Hallin et al., 2011).

In large factor models, each variable, say xit, is decomposed into the sum of two unobserv-

able components, the “common component ”, χit, and the “idiosyncratic component ”, ξit.

The idiosyncratic components are poorly correlated across sections in a sense that will

be specified below; within a macroeconomic context, they can be interpreted as captur-

ing sectoral elements and/or measurement errors. By contrast, the common components

are driven by a small number q of unobservable shocks, ujt, j = 1, . . . , q, which are the

same for all cross-sectional units. Such shocks, often called “dynamic factors”, are loaded

through one-sided linear filters, or impulse-response functions. The loadings are quite

general, so that the model is flexible enough to accommodate pro-cyclical and counter-

cyclical as well as leading, lagging and coincident behaviors. A restriction which we shall

not impose in this paper, but is often assumed in the literature, is that the common com-

ponents are contemporaneous linear combinations of r ≥ q unobservable variables fkt,

k = 1, . . . , r, often called “static factors”. In such a case, we say that the model admits a

static factor representation. The dynamic nature of the model comes from the fact that

the static factors have a dynamic representation in the common shocks.

The main feature distinguishing large approximate factor model from traditional dy-

namic factor models (Sargent and Sims, 1977, and Geweke, 1977) is the fact that the

idiosyncratic components are not necessarily orthogonal to each other. This important

generalization has the consequence that common and idiosyncratic components are no

longer conceptually distinguishable to each other if the cross-sectional dimension is fi-

nite. This motivates the assumption of an infinite number of variables. The observed

data are thought of as an (n, T )-dimensional realization of a double-indexed process xit,

i = 1, . . . ,∞, t = −∞, . . . ,∞. Uniqueness of the common-idiosyncratic decomposition
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is ensured by appropriate assumptions about the asymptotic behavior, as n gets larger,

of the covariance structure of the common and the idiosyncratic components, which, on

the one hand, limit the total amount of idiosyncratic correlation and, on the other hand,

impose that all common shocks be sufficiently “pervasive” along the cross sectional dimen-

sion. A pivotal implication of these assumptions is divergence of the q largest eigenvalues

of the spectral density matrix of the first n processes, as n→∞, along with boundedness

of the q+ 1-th. Such eigenvalues, call them λnk(θ), θ ∈ [−π, π], are often called “dynamic

eigenvalues ”1. An inverse result (Forni and Lippi, 2001) establishes the existence of a

factor representation for the x’s when such asymptotic behavior of the dynamic eigen-

values is assumed. Similarly, the existence of a well defined static factor representation

is linked to an analoguous µnk of the variance-covariance matrix of the first n variables

(Chamberlin and Rothschild, 1983).

A crucial preliminary step in the statistical analysis of large factor models is the estima-

tion of the number q of dynamic factors, which is needed for the implementation of the

estimation methods proposed in the literature. If the static factor representation restric-

tion is imposed, both the number q of dynamic factors and the number r of static factors

must be estimated. Given the above characterization of large factor models in terms of

the asymptotic behavior of eigenvalues, it is not surprising that most existing criteria to

determine the number of factors are based on the sample counterparts of the dynamic

eigenvalues, say λTnk(θ), and the static eigenvalues, say µTnk. For n and T large enough, the

first q estimated dynamic eigenvalues should be large as compared to the smallest n− q.
Similarly, for the first r static eigenvalues.

Most of the estimators proposed in the literature for q and r, in analogy with information

criteria such as AIC and BIC, entail minimization of a loss function which includes a

“penalty” term, increasing in the number of factors (Bai and Ng, 2002, 2007, Amengual

and Watson, 2007, Hallin and Lǐska, 2007, Alessi et al. 2010). As noticed by Onatski

(2010), this is equivalent to retain a number of factors equal to the number of eigenvalues

larger than a threshold value2, given by the penalty term. A problem with the use of

penalty functions is that they are discretionary to a large extent. Several functional

forms can in principle satisfy the consistency requirement, and each one of them can be

multiplied by an arbitrary constant, which calls for calibration to work properly in small

samples. Hallin and Lǐska (2007) proposes an ingenious and effective method to calibrate

the penalty function. The method, however, requires evaluation of the loss function

over a grid nj, Tj, j = 1, . . . , J , and the outcome is sensitive to the choice of such a grid.

Moreover, the use of sub-samples entails that the result may depend on the ordering of the

1A basic reference about dynamic eigenvalues is Brillinger (1981).
2Such a threshold level depends on the sample size n, T in such a way as to ensure consistency of the

estimator as n and T get larger.
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variables in the data set. Two notable exceptions to the use of penalty functions are Ahn

and Horenstein (2013) and Onatski (2009). Firstly, Ahn and Horenstein (2013) concerns

static factors. The “Eigenvalue Ratio” estimator is given by the number k maximizing

the ratio of two adjacent eigenvalues, ER(k) = µTnk/µ
T
n,k+1. When both eigenvalues are

either large or small, the ratio should be relatively small, but when k = r the numerator

is large and the denominator is small, so that the ratio should be large. The “Growth

Rate” criterion GR is based on a similar idea. Such estimators are very effective under

simulation, and do not require preliminary determination of nuisance parameters. Both

ER and GR have quite natural dynamic counterparts, the “Dynamic Eigenvalue Ratio”

(DER) and the “Dynamic Growth Rate” (DGR), which have never been studied so far.

In particular, let θh = 2πh/(2MT + 1), h = −MT , . . . ,MT , and λTnk =
∑MT

h=−MT
λTnk(θh).

Under standard assumption on the behavior of the window size MT as T → ∞, λTnk is a

consistent estimator of λnk =
∫ π
−π λnk(θ) dθ, which is the variance of the k-th “dynamic”

principal component of x1t, . . . , xnt
3. Then the DER can be defined as

DER(k) = λTnk/λ
T
n,k+1.

The definition of DGR will be given below. In this paper we prove consistency of arg max

DER(k), arg max DGR(k) and arg max DDR(k) as estimators of q, as min(n, T ) → ∞.

Moreover, we perform a few simulation experiments to evaluate the performance of such

estimators, as compared to the methods proposed by Hallin and Lǐska (2007) and Onatski

(2009), call them HL and O, respectively, and the DDR method introduced below.

Secondly, Onatski (2009) concerns dynamic factors. It proposes a test for the null of

q = k against the alternative of k < q ≤ qmax. The test can be used sequentially as a

device to estimate q; however, the procedure proposed in the paper requires preliminary

choices which are discretionary to some extent and may affect the final result. An inter-

esting similarity with Ahn and Horenstein (2013) is that the test statistic is based on an

eigenvalue ratio, i.e.
λTnk(θ)− λTn,k+1(θ)

λTn,k+1(θ)− λTn,k+2(θ)
.

In the present paper we define the “Dynamic eigenvalue Difference Ratio” (DDR) as the

ratio above, where λTnk(θ) is replaced by λTnk:

DDR(k) =
λTnk − λTn,k+1

λTn,k+1 − λTn,k+2

.

In other words, we do not consider the variance of the principal components at a specific

frequency, but the overall variance. Since aggregation is performed before computing the

3For a basic reference about “principal component series” or dynamic principal components see

Brillinger (1981).
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ratio, we do not need either to choose a specific frequency or to average in some way the

potentially different results obtained at different frequencies. Having the above ratio, we

simply use the arg max as our estimator of q (like Ahn and Horestein, 2013), rather than

using the maximum to perform a recursive test. Since we do not have a test, we also

avoid the need to choose a significance level either. The static equivalent of DDR, the

“eigenvalue Difference Ratio” DR(k) = (µTnk − µTn,k+1)/(µTn,k+1 − µTn,k+2) can in principle

be used as an alternative to ER and GR to determine the number of static factors r.

The basic idea behind DDR and DR is that the difference between diverging eigenvalues

should be large, whereas the difference between bounded eigenvalues should be small.

The illustration of Figure 1 can also be useful to get an intuition of the method. Consider

the plot of λTnk (or µTnk) as a function of k. Then DDR(k) (or DR(k)) is the ratio of two

adjacent slopes of the polyline and therefore represents the percentage variation of slope

in k + 1. Going along the curve from the right to the left, the maximum is DDR(k∗) (or

DR(k∗)) as long as k∗ + 1 is the point where, so to speak, the climb becomes hard.

Figure 1: Estimated dynamic eigenvalues λTnk (dotted line, left y axis) and DDR(k) (solid line, right

y axis), plotted as functions of i (x axis). Estimates are obtained from data generated with the ARMA

specification 5.3 (Section 5), (n, T ) = (100, 200), q = 4. DDR(k) reaches its maximum in k∗ when the

maximum slope change of the dotted line is in k∗ + 1.

Below, we prove that argmax DDR(k) is a consistent estimator of q, as min(n, T )→∞,

and evaluate its performance in some experiments. In addition, we show that arg max
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DR(k) is a consistent estimator of r as min(n, T ) → ∞ and evaluate its performance

under simulation, in comparison with the estimators ER and GR proposed by Ahn and

Horenstein (2013).

Simulation results are the following: (i) DDR dominates DER and DGR in all exper-

iments; (ii) DDR performs comparably or even better than both HL and O in most

experiments; (iii) DR overperforms ER and GR when the static factors have different

variances.

The paper is organized as follows. Section 2 describes the Generalized Dynamic Factor

model along with its fundamental assumptions. Sections 3 and 4 introduce formally our

criteria and state our consistency results. Section 5 presents numerical simulations in

dynamic settings. Section 6 studies the DR criterion for the number of static factors

along with some simulations. Section 7 concludes. Proofs are given in the Appendix.

2. The reference model

Our reference model is the Generalized Dynamic Factor Model (GDFM) introduced by

Forni et al. (2000). The basic assumptions are reinforced following Hallin and Lǐska

(2007), with slight variations. Precisely, the double-indexed processes xit, χit and ξit,

i ∈ N, t ∈ Z, conform to the following assumptions.

Assumption A1 (Forni et al., 2000). For all i ∈ N, t ∈ Z,

(1)

xit = χit + ξit

χit =

q∑
j=1

bij(L)ujt

where

(i) the q-dimensional vector process ut = (u1t · · · uqt)′ is orthonormal white noise;

(ii) the n-dimensional vector process ξnt = (ξ1t · · · ξnt)′ is zero mean stationary for any

n ∈ N and ξit is orthogonal to ujτ for any i, j ∈ N and t, τ ∈ Z;

(iii) the filters bij(L), i ∈ N, j = 1, . . . , q are one-sided in the lag operator L and their

coefficients are square summable, i.e.,
∑∞

k=1 b
2
ijk <∞ for all i ∈ N and j = 1, . . . , q.

In matrix notation, we can write

(2) xnt = χnt + ξnt, χnt = Bn(L)ut

where xnt = (x1t · · · xnt)′, χnt = (χ1t · · · χnt)′ and Bn(L) is the n×q matrix (bij(L))i=1,...,n
j=1,...,q

.

The variables ujt are the common shocks or dynamic factors. The variables χit and ξit are

the common components and the idiosyncratic components of xit, respectively.
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Assumption A2 (Hallin and Lǐska, 2007). For all n ∈ N,

xnt =
∞∑

k=−∞

Ck zt−k

where zt is an n-dimensional white noise with non-singular covariance matrix and finite

fourth-order cumulants, and the n× n matrices Ck = (cij,k) are such that

sup
i,j∈N

∞∑
k=−∞

|cij,k| |k|1/2 <∞

for all i, j = 1, . . . , n. Moreover, let ci1,...,i`(k1, . . . , k`−1) denote the cumulant of order ` of

xi1,t+k1 , . . . , xi`,t+k`−1
. For ` = 1, . . . , 4, we assume

sup
i1,...,i`

∞∑
k1=−∞

· · ·
∞∑

k`−1=−∞

|ci1,...,i`(k1, . . . , k`−1)| <∞.

Let Σn(θ), Σχ
n(θ), Σξ

n(θ), θ ∈ [−π, π], denote the spectral density matrices of xnt, χnt,

ξnt, respectively, and λni(θ), λ
χ
ni(θ), λ

ξ
ni(θ), i = 1, . . . , n, denote their respective eigenval-

ues, in decreasing order of magnitude. Such eigenvalues are sometimes called dynamic

eigenvalues to avoid confusion with the eigenvalues of the variance-covariance matrices of

the corresponding processes.

Assumption A3 (Forni et al., 2000). The first idiosyncratic dynamic eigenvalue λξn1(θ)

is uniformly bounded, i.e. there exists a real number Λ such that λξn1(θ) ≤ Λ for any

θ ∈ [−π, π] and for any n ∈ N.

Assumption A4. The q-th common dynamic eigenvalue λχnq(θ) diverges almost everywhere,

that is,

lim
n→∞

λχnq(θ) =∞

a.e. in [−π, π].

Assumptions A3 and A4 ensure uniqueness of the common and the idiosyncratic compo-

nents appearing in decomposition (1), see Forni et al. (2000). Assumption A3 implies

that the idiosyncratic components are, so to speak, “weakly” correlated across sections.

It is substantially weaker than the orthogonality assumption which is typical of “exact”

(as opposite to “approximate”) factor models, in that, for instance, each one of the ξit’s

can be correlated with ξjt, j ∈ S, S being a finite set of natural numbers. Notice that

A4 does not rule out the case λχnk(0) = 0, for any n and some k ≤ q. Such a case may

be economically interesting for macroeconomic data sets, since it holds when some of the

common shocks (e.g. monetary policy shocks) have transitory effects on all variables.
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The orthogonality Assumption A1(ii) implies that Σn(θ) = Σχ
n(θ) + Σξ

n(θ). Weyl’s in-

equality for Hermitian matrices implies

λnk(θ) ≥ λχnk(θ) and λnk(θ) ≤ λχnk(θ) + λξn1(θ)

for k = 1, . . . , n. Moreover, λχnk(θ) = 0 for k > q. Hence A1, A3 and A4 imply

Property A3′. limn→∞ λnq(θ) =∞ a.e. in [−π, π].

Property A4′. λnq+1(θ) ≤ Λ for any θ ∈ [−π, π] and for any n ∈ N.

Forni and Lippi (2001) establish a remarkable converse result, i.e., if A2 holds, Properties

A3′ and A4′ imply A1, A3 and A44. In other words, under the maintained Assumption

A2, divergence of the first q eigenvalues of the x’s, along with boundedness of the q+1-th,

ensure that the x’s conform to the dynamic factor structure A1, A3 and A4, so that A1-

A4 are equivalent to A2, A3′ and A4′. This equivalence is the dynamic factor analogue

of the static factor representation result of Chamberlain and Rothschild (1983).

3. The estimators for finite n and infinite T

Clearly the selection of the number q of dynamic factors must be based on finite-sample

information. Before turning to this task in Section 4, it is convenient to define our

estimators in population and obtain consistency results as n approaches infinity, assuming

that the spectral density matrices Σn(θ) are known.

The first two criteria that we introduce are dynamic generalizations of the Eigenvalue

Ratio (ER) criterion and the Growth Ratio (GR) criterion proposed by Ahn and Horestein

(2013) for the estimation of the number of static factors within a static model. The

Dynamic Eigenvalue Ratio is simply the ratio of the variances of two adjacent dynamic

principal components, i.e.

DERn(k) =
λnk
λn,k+1

,

where λnk =
∫ π
−π λnk(θ) dθ. The Dynamic Growth Ratio is

DGRn(k) =
ln[Vn(k − 1)/Vn(k)]

ln[Vn(k)/Vn(k + 1)]
=

ln(1 + λ̃nk)

ln(1 + λ̃n,k+1)
,

where

Vn(k) =
n∑

j=k+1

λnj and λ̃nk =
λnk
Vn(k)

.

4Indeed, in Forni and Lippi (2001) the maintained assumption is milder than Assumption A2.
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Both the numerator and the denominator of DGR can be interpreted as the growth rates

of the variances of the dynamic principal components up to index k. Lastly, the Dynamic

Difference eigenvalue Ratio is closely related to test statistic proposed by Onatski (2009).

DDRn(k) =
λnk − λn,k+1

λn,k+1 − λn,k+2

.

The population counterpart of our estimators are the values of k which maximize DERn(k),

DGRn(k) and DDRn(k), for 1 ≤ k ≤ qmax, where qmax is an upper bound for q chosen by

the researcher:

q̂nDER = arg max
1≤k≤qmax

DERn(k)

q̂nDGR = arg max
1≤k≤qmax

DGRn(k)

q̂nDDR = arg max
1≤k≤qmax

DDRn(k).

Note that q̂nDER, q̂nDGR and q̂nDDR are deterministic; their sample analogues will be in-

troduced in the next section.

Since we use eigenvalue ratios and eigenvalue difference ratios, we need to ensure that

denominators are bounded away from zero. In addition, we need to rule out the case

in which the diverging eigenvalues (or eigenvalue differences) diverge at different rates.

Properties A3′ and A4′, which are already implied by A1-A4, are not sufficient to such

purposes. Hence we make the following additional assumption.

Assumption A5.

(i) There exist positive constants c+
k , c

−
k and a natural number N1 such that

c+
1 >

λn1

n
> c−1 > · · · > c+

q >
λnq
n

> c−q

and

c+
q+1 > λnq+1 > c−q+1 > · · · > c+

qmax+2 > λn,qmax+2 > c−qmax+2

for all n > N1.

(ii) Let Vn(q)/n = (
∑n

k=q+1 λnk)/n. Then there exists a positive constant c and natural

number N2 such that Vn(q)/n > c for all n > N2.

(iii) The first qmax + 2 eigenvalues are distinct, i.e., λnk(θ) > λn,k+1(θ), a.e. in [−π, π],

k = 1, . . . , qmax + 2.
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A5(i) essentially says that the integrals of the diverging eigenvalues, along with the

differences between adjacent eigenvalue integrals, diverge linearly with n. Moreover, the

non-diverging eigenvalue integrals up to index qmax + 2, along with their differences, are

bounded away from zero. Linear divergence is a quite natural assumption in the present

setting. Below, we shall assume a uniform upper bound for the spectral density functions

of the x’s (Assumption B2). This implies that the trace of Σn(θ), and therefore the

“large” eigenvalues, cannot diverge faster than n. On the other hand, a uniform lower

bound for the variances of the x’s is sufficient to ensure that λn1 cannot diverge slower

than n. Notice however that such very mild regularity conditions do not rule out slow

divergence of λnk for k > 1. A5(i) excludes this possibility.

A5 (ii) is needed for the DGR criterion. It amounts to assuming that the average

variance of the idiosyncratic components ξit’s is bounded away from 0 as n→∞; it rules

out the (somewhat bizarre) case in which the ξit’s vanish as i increases.

A5(iii) is needed to ensure differentiability of the eigenvalues. See Theorem 9, Lan-

caster (1964).

Notice that A5 does not rule out the case limn→∞ λnk(0)/n = 0 for some k ≤ q, which

is necessarily verified when λχnk(0) = 0 for all n, a case which, as argued above, may be

of interest for macroeconomic data sets. In addition, we may have limn→∞ λn,q+1(0) = 0.

This case can also be of interest when the x’s are the first differences of I(1) variables,

since it holds true when the idiosyncratic components of the original I(1) variables are

already stationary.

Theorem 1. Let Assumptions A1-A5 hold and q ≥ 1. Then there is a natural number

N such that, for any n > N ,

q̂nDER = q̂nDGR = q̂nDDR = q.

The proof is provided in the Appendix.5

4. The estimators for finite n and T

Coming to the sample level, we have to replace the population quantities q̂nDER, q̂nDGR and

q̂nDDR with the feasible estimators q̂TnDER, q̂TnDGR and q̂TnDDR, based on finite realizations of

the x’s. To this end, in Subsection 4.1 we replace the population spectral density matrix

Σn(θ) with the lag-window estimator ΣT
n (θ) (similar results are obtained in Subsection 4.2

by using a periodogram smoothing estimator). Correspondingly, the eigenvalues λnk(θ)

are replaced by the eigenvalues λTnk(θ) of ΣT
n (θ). In addition, the integrals of the eigenvalue

functions must be approximated numerically. We use simple Riemann sums over a finite

5The possibility q = 0 (i.e. xit = ξit) could be allowed for, following Ahn and Horenstein (2013), by

using a mock eigenvalue integral λn0 = dn, where d is an arbitrary positive constant. The constant d

however, would call for calibration.
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number, increasing with T , of equally spaced points (different choices would not change

the theoretical results). The sample eigenvalue ratios DERT
n (k), DGRT

n (k) and DDRT
n (k)

are then defined as the respective population ratios, where the integrals of the population

eigenvalues are replaced with their estimators, i.e., the Riemann sums of the sample

eigenvalues.

Under standard assumption (see Assumption B1 below), as T gets larger, all such

estimators approach in probability their population counterparts for any given n. There-

fore, by virtue of Theorem 1, they tend to q in probability for any n > N . Such fixed-n

consistency, however, is not sufficient for our purposes, since we have to deal with a diverg-

ing cross-sectional dimension. An additional condition, borrowed from Hallin and Lǐska

(2007), ensures that consistency is uniform in n (Assumption B2). As a consequence, the

estimators approach q in probability as min(n, T )→∞.

4.1. Lag window estimators

Let ΓT
n (j) be the sample covariance matrix of xnt and xn,t−j, i.e.

(3) ΓT
n (j) =

1

T − j

T∑
t=1

xnt x
′
n,t−j.

A possible estimator of the spectral density matrix is the (2MT + 1)-point discrete

Fourier transform of the truncated two-sided sequence ΓT
n (−MT )ωT−MT

, . . . , ΓT
n (0)ωT0 ,

. . . , ΓT
n (MT )ωTMT

, i.e.,

ΣT
n (θh) =

1

2π

MT∑
j=−MT

ΓT
n (j)ωTj e

−ijθh ,

where θh = 2πh/(2MT + 1), h = −MT , . . . ,MT , and ωTj = ω(j M−1
T ), α 7→ ω(α) is a

positive even weight function satisfying condition B1 below. In our Monte Carlo exercises

we use the triangular window given by

ωTj = 1− |j|
MT

.

Let λTnk(θh) denote the k-th eigenvalue of ΣT
n (θh) in decreasing order of magnitude. We

define

DERT
n (k) =

∑MT

h=−MT
λTnk(θh)∑MT

h=−MT
λTn,k+1(θh)

DGRT
n (k) =

ln[V T
n (k − 1)/V T

n (k)]

ln[V T
n (k)/V T

n (k + 1)]
=

ln(1 + λ̃Tnk)

ln(1 + λ̃Tn,k+1)
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where

V T
n (k) =

n∑
j=k+1

MT∑
h=−MT

λTnj(θh) λ̃Tnk =

∑MT

h=−MT
λTnk(θh)

V T
n (k)

.

DDRT
n (k) =

∑MT

h=−MT
λTnk(θh)−

∑MT

h=−MT
λTn,k+1(θh)∑MT

h=−MT
λTn,k+1(θh)−

∑MT

h=−MT
λTn,k+2(θh)

.

Then our estimators of the number q of dynamic factors are

q̂TnDER = arg max
1≤k≤qmax

DERT
n (k)

q̂TnDGR = arg max
1≤k≤qmax

DGRT
n (k)

q̂TnDDR = arg max
1≤k≤qmax

DDRT
n (k).

The additional assumptions we need for our consistency result are the following.

Assumption B1.

(i) MT →∞ and T−1MT → 0, as T →∞;

(ii) α 7→ ω(α) is an even piecewise continuous function, piecewise differentiable up to

order three, with bounded first three derivatives, satisfying ω(0) = 1, |ω(α)| ≤ 1 for

all α and ω(α) = 0 for |α| > 1.

Assumption B2 (Hallin and Lǐska, 2007).

The entries σij(θ) of Σn(θ) are uniformly (in n and θ) bounded and have uniformly (in n

and θ) bounded derivatives up to order two; namely, there exists Q <∞ such that

sup
i,j∈N

sup
θ∈[−π,π]

∣∣∣∣drσij(θ)dθr

∣∣∣∣ ≤ Q

for r = 0, 1, 2.

Assumption B1 is a standard assumption which is needed to ensure consistency of the

estimator of the spectral density matrix. Assumption B2 ensures that consistency is

uniform in n (see Hallin and Lǐska, 2007, equation (5)).

Let us now state our main result, which is proven in the Appendix.

Theorem 2. Let Assumptions A1 to A5, B1 and B2 hold and q ≥ 1. Further assume

that limnM∗−1
T = 0 as n and T go to infinity, with M∗

T = max(M−2
T ,M

1/2
T T−1/2). Then

plimm→∞ q̂
T
nDER = plimm→∞ q̂

T
nDGR = plimm→∞ q̂

T
nDDR = q

where m = min(n, T ).
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4.2. Periodogram smoothing estimators

A variant of the lag window estimator is given by the periodogram smoothing estimator

(4) ΣT ∗
n (θ) =

2π

T

T−1∑
t=1

WT

(
θ − 2πt

T

)
ITn

(
2πt

T

)
where ITn (α) is the periodogram matrix defined as

ITn (α) =
1

2πT

T∑
t=1

xnte
−iαt

T∑
t=1

x′nte
iαt

and W T (α), −∞ < α <∞, T ∈ N is a family of periodic functions with period 2π, which

on (−π, π] are defined as

WT (α) =
1

BT

∞∑
j=−∞

W

(
α + 2πj

BT

)
.

Here W (β) is a positive even function, independent of T , with bounded derivative, satis-

fying
∫∞
−∞W (β)dβ = 1,

∫∞
−∞ |β|W (β)dβ <∞ and BT is a bandwidth satisfying BT → 0,

BTT →∞ as T →∞.

It is known that, irrespective of the precise form of W (β), the periodogram smoothing

estimator ΣT ∗
n (θ) is a consistent estimator of Σn(θ), as T → ∞ (see Brillinger (1981),

Section 7.4).

In our Monte Carlo exercise below we use a simple average of the periodogram across

the frequencies in the relevant band. This estimator is obtained by assuming the Daniell

window

(5) W (β) =

{
1/(2π) if |β| ≤ π

0 if |β| > π,

which gives

WT (α) =

{
1/(2πBT ) if |α| ≤ BTπ

0 if |α| > BTπ.

Let us now consider a frequency grid θh, h = −MT , . . . ,MT . Let λT∗nk(θh) denote the k-

th eigenvalue of ΣT∗
n (θh) in decreasing order of magnitude. The corresponding information

criteria are

DERT ∗
n (k) =

∑MT

h=−MT
λT ∗nk (θh)∑MT

h=−MT
λT ∗n,k+1(θh)
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DGRT ∗
n (k) =

ln[V T∗
n (k − 1)/V T∗

n (k)]

ln[V T∗
n (k)/V T∗

n (k + 1)]
=

ln(1 + λ̃T ∗nk )

ln(1 + λ̃T ∗n,k+1)

where

V T∗
n (k) =

n∑
j=k+1

MT∑
h=−MT

λT ∗nj (θh) λ̃T ∗nk =

∑MT

h=−MT
λT ∗nk (θh)

V T∗
n (k)

DDRT ∗
n (k) =

∑MT

h=−MT
λT ∗nk (θh)−

∑MT

h=−MT
λT ∗n,k+1(θh)∑MT

h=−MT
λT ∗n,k+1(θh)−

∑MT

h=−MT
λT ∗n,k+2(θh)

.

The estimators q̂T ∗nDER, q̂T ∗nDGR and q̂T ∗nDDR are defined as the arguments of the maxima

of the respective criteria.

5. Numerical simulations

To evaluate the performance of the criteria defined in the previous section, we conduct

three Monte Carlo experiments with three different specifications of Model (1).

First experiment. The first DGP follows the one proposed by Hallin and Lǐska (2007),

Section 5. Precisely:

i. The common shocks ukt, k = 1, . . . , q, t = 1, . . . , T , are iid ∼ N (0, Dk), with D1 = 1,

D2 = .5 and D3 = 1.5.

ii. The idiosyncratic components are of form ξit =
∑4

j=0

∑2
k=0 gi,j,k vi+j,t−k, where the

vit’s are iid ∼ N (0, 1), and the gi,j,k’s are iid ∼ U[1,1.5], where i = 1, . . . , n, t =

1, . . . , T , j = 1, . . . , 4, k = 0, 1, 2. To ensure both autocorrelation and cross-correlation

among idiosyncratic, the vit’s and the gi,j,k’s are mutually independent and indepen-

dent of the uit’s.

iii. the filters bik(L), i = 1, . . . , n, k = 1, . . . , q, are randomly generated (independently

from the ukt’s and ξit’s) by one of the following devices: (1) MA loadings: bik(L) =

bik,0+bik,1L+bik,2L
2 with iid and mutually independent coefficients (bik,0, bik,1, bik,2) ∼

N (0, I3); (2) AR loadings: bik(L) = bik,0(1 − bik,1L)−1(1 − bik,2L)−1 with iid and

mutually independent coefficients bik,0 ∼ N (0, 1), bik,1 ∼ U[.8,.9] and bik,2 ∼ U[.5,.6].

Finally, for each i, the variance of ξit and that of the common component
∑q

k=1 bik(L)

are normalized to 0.5.

The artificial samples were generated with q = 2, 3 and (n, T )= (60, 100), (100, 100),

(70, 120), (120, 120), (150, 120).

Second experiment. The second DGP is the one studied by Onatski (2009), Sections 5.1

and 5.3. Precisely:
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i. The common shocks ukt, k = 1, . . . , q, t = 1, . . . , T , are iid ∼ N (0, Ik).

ii. The idiosyncratic components follow AR(1) processes both cross-sectionally and over

time: ξit = ρi ξi,t−1 + vit, vit = ρvi−1,t + εit, where ρi ∼ iidU[−.8,.8], ρ = .2 and

εit ∼ iidN (0, 1).

iii. The filters bik(L), i = 1, . . . , n and k = 1, . . . , q, are randomly generated (indepen-

dently from the ukt’s and ξit’s) by one of the following devices: (1) MA loadings:

bik(L) = bik,0(1 + bik,1L)(1 + bik,2L) with iid and mutually independent coefficients

bik,0 ∼ N (0, 1), bik,1 ∼ U[0,1] and bik,2) ∼ U[0,1]; (2) AR loadings: same as in the first ex-

periment; bik(L) = bik,0(1− bik,1L)−1(1− bik,2L)−1 with iid and mutually independent

coefficients bik,0 ∼ N (0, 1), bik,1 ∼ U[.8,.9] and bik,2 ∼ U[.5,.6].

For each i, the idiosyncratic component ξit and the common component χit =
∑q

k=1 bik(L)

are normalized so that their variances equal σ2[1 − (0.4 + 0.05q)] and 0.4 + 0.05q, re-

spectively. Following Onatski (2009), we set q = 2 and (n, T, σ2) equal to (70, 70, 1),

(70, 70, 2), (70, 70, 4), (100, 120, 1), (100, 120, 2), (100, 120, 6), (150, 500, 1), (150, 500, 8),

(150, 500, 16).

Third experiment. The third GDP is the following.

i. The common shocks ukt, k = 1, . . . , q, t = 1, . . . , T , are iid ∼ N (0, Ik) for case (a)

and normal iid with random variance between 1 and 1.5 for case (b).

ii. Same as in the second experiment. The idiosyncratic components follow AR(1) pro-

cesses both cross-sectionally and over time: ξit = ρi ξit−1 +vit, vit = ρvi−1t+ εit, where

ρi ∼ iidU[−.8,.8], ρ = 0.2 and εit ∼ iidN (0, 1).

iii. the filters bik(L), i = 1, . . . , n and k = 1, . . . , q, are randomly generated (indepen-

dently from the ukt’s and ξit’s) with ARMA loadings: bik(L) = (mik,0 + mik,1L +

mik,2L
2)(aik,0(1−aik,1L)−1), where coefficients are iid and mutually independent and

mik,s ∼ U[−1,1], s = 0, 1, 2, and aik,r ∼ U[−0.8,0.8], r = 0, 1.

In this experiment we want to control for the common to idiosyncratic variance ratio with-

out forcing all variables in the cross section to have the same ratio. To this end, having

computed the common components from drawing j, we compute the square root of the

average sample variance, say τ(j), and use this overall measure of common volatility to

normalize the idiosyncratic components in two different ways: (1) all idiosyncratic com-

ponents are multiplied by
√

0.5 τ(j) (large idiosyncratic components); (2) all idiosyncratic

components are multiplied by
√

0.2 τ(j) (small idiosyncratic components). Since the vari-

ance of the idiosyncratic components produced with device (ii) above is on average 1.42,6

6We computed the average sample variance over 10000 replications.
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the idiosyncratic to common variance ratio is on average 0.72 in the large idiosyncratic

case and 0.28 in the small idiosyncratic case, irrespective of q.

We set q = 2, 4, 6 and (n, T )= (50, 80), (120, 80), (50, 240), (120, 240), (240, 480).

To compute DER, DGR and DDR, we use the lag window estimator (3) with the trian-

gular smoothing function ωj = 1− |j|M−1
T and truncation parameter MT = [0.75

√
T ]. To

compute DER∗, DGR∗ and DDR∗ we use the periodogram smoothing estimator (4) with

the Daniell window (5) and bandwidth BT = (2MT + 1)/T , MT = d
√
T e. For both meth-

ods, we evaluate the eigenvalues in the frequency grid θh = 2πh/T , h = −MT , . . . ,MT .

We compare our criteria with the methods proposed by Hallin and Lǐska (2007) and

Onatski (2009). With regard to Hallin and Lǐska estimator (HL), we use the log infor-

mation criterion ICT
2;n with penalty p1(n, T ) and the Bartlett lag window with truncation

parameter MT = d0.75
√
T e, which yield the best performance in the simulations shown

by the authors. The method requires evaluation of the loss function over a grid nj, Tj,

j = 1, . . . , J . We stick to the one proposed by the authors, i.e. nj = n−10j, Tj = T−10j,

j = 0, 1, 2, 3.

When dealing with Onatski’s method (O), we use the procedure described in Section

5.3 of the quoted paper. We found that the results are sensitive to the choice of the

parameter m (Onatski, 2009, footnote 7). For the second experiment, we stick to Onatski’s

choice, which is very effective. For the first DGP, we usem = 15. For the third experiment,

we use m = 15, 20, 30 for T = 80, 240, 480, respectively. These values produce better

results than the ones suggested in Onatski’s paper.

For all experiments and all estimators we set qmax = 8. For all experiments we generate

500 artificial data sets. We evaluate the results by using the percentage of correct answers.

Table 1 reports results for the first experiment. Boldface numbers denote the estima-

tor(s) which perform best for each q, n, T configuration. Results for HL are very close to

those reported in Hallin and Lǐska (2007). HL has the best overall performance with MA

loadings, but is clearly beaten by DDR and DDR∗ with AR loadings, case q = 3. DDR

and DDR∗ perform similarly to one another and dominate DER, DGR, DER∗ and DGR∗

and O.

Table 2 reports results for the second experiment. Results for O are close to those

reported in Onatski (2009). With MA loadings, O is the best method for all n, T, σ2

configurations. DDR and DDR∗ are close to each other and O. HL does not work well for

large σ2. With AR loadings, DDR and DDR∗ perform the best for all n, T, σ2 configura-

tions. Again HL has problems with large σ2, but for the case n = 500. For both MA and

AR loadings, DER, DGR, DER∗ and DGR∗ have a good performance but are dominated

by DDR and DDR∗.

Table 3 reports results for the third experiment, case (a), in which all common shocks

have the same variance. DDR dominates all other methods for all but two rows in the
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upper panel (Large idiosyncratic components): the configuration (q, n, T ) = (6, 50, 80)

(best result O) and (q, n, T ) = (6, 120, 240) (best result HL). DDR and DDR∗ almost

uniformly dominate DER, DGR, DER∗ and DGR∗ (but DDR performs slightly better

than DDR∗).

Table 4 reports results for the third experiment, case (b), in which common shocks have

different variances. Again, DDR dominates all other methods in almost all cases. The

only one notable exception is the configuration (q, n, T ) = (6, 120, 240), large idiosyncratic

component (best result HL).

Overall, DDR has the best score in 78 out of 98 rows of Tables 1-4. In the remaining

20 raws, it ranks second (16 times) or third (4 times). When DDR is not the best method,

the difference with respect to the best method is very small in almost all cases, the largest

percentage deviation being DDR/HL=83/95 in the configuration (q, n, T ) = (6, 120, 240),

large idiosyncratic component, Table 4.

We conclude that DDR is a valid alternative to existing methods.

6. The static factor representation and the DR estimator

As explained in the introduction, Ahn and Horestein (2013) proposes two estimators,

called ER (Eigenvalue Ratio) and GR (Growth Ratio), for determining the number r of

factors in static factor models. In this section we propose a new criterion, the DR (eigen-

value Difference Ratio), which is the static eigenvalue equivalent of the DDR discussed

above. Notice that the DR estimator is closely related to Onatski’s (2010) estimator,

which is the maximum k satisfying µTk − µTk+1 ≥ δ, µTk being the kth eigenvalue of the

variance-covariance matrix of the data and δ a given threshold. Intuitively, using ratios in

place of differences enables us to avoid the calibration of δ. Following Forni et al. (2009),

we first introduce assumptions under which the generalized dynamic factor model admits

a static factor representation. Then we prove consistency of DR under suitable condition

as min(n, T ) → ∞. Finally we perform a simulation exercise showing that DR performs

well, particularly when some factors have small explanatory power.

Assumption C1. There exist an integer r ≥ q, a nested sequence of n×r matrices Λn, and

a one-sided r×q matrix polynomial N(L), independent of n, such that Bn(L) = ΛnN(L),

n = 1, . . . ,∞.

Let ft = N(L)ut. Then equation (2) can be rewritten as

(6) xnt = Λnft + ξnt.

The above representation is sometimes called “static”, since the “static factors”, i.e., the

r entries of ft, are loaded contemporaneously by the x’s. Assumption C1 amounts to

assuming that the common components χit, i = 1, . . . , n span a finite-dimensional space
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for each t. It is easily seen that C1 is fulfilled when Bn(L) is a finite moving average for

all n, since in this case χit can be written in the form (6) with ft is a linear combination

of ut, · · · ,ut−p, p being the order of Bn(L). By contrast, a simple example of a dynamic

model which does not admit a static factor representation is

xit =
1

1− αiL
ut + ξit

(see Forni and Lippi, 2011), since in this case the linear space spanned by χit, i = 1, . . . , n,

is infinite-dimensional (unless the αi’s satisfy special restrictions).

Assumption C1 is not sufficient to guarantee uniqueness of the number of static fac-

tors r. A standard assumption ensuring uniqueness is the following (Chamberlain and

Rothschild, 1983). Let Γχn be the variance-covariance matrix of χnt and µχnk be its k-th

eigenvalue in descending order of magnitude.

Assumption C2. µχnr →∞ as n→∞.

Let Γn and Γξ
n be the variance-covariance matrices of xnt and ξnt, respectively. More-

over, let µnk and µξnk be their k-th eigenvalues in decreasing order of magnitude. Mutual

orthogonality of the common and the idiosyncratic components implies that Γn = Γχ
n+Γξ

n.

By Weyl’s inequalities we have

µχnk + µξnn ≤ µnk ≤ µχnk + µξn1, k = 1, . . . , n.

Hence µχnr + Λ ≥ µnr ≥ µχnr, so that C2 is equivalent to divergence of µnr as n → ∞.

In addition, µn,r+1 ≤ µξn1, since µχn,r+1 = 0. But obviously µξn1 cannot be larger than

λξn1, so that by Assumption A3 both µξn1 and µn,r+1 are bounded above by Λ. However,

divergence of µnr along with boundedness of µn,r+1 are not sufficient for our purposes.

We then reinforce C2 by replacing it with the following assumption, which is the “static”

analogue of A5(i).

Assumption C2′.

There exist positive constants d+
k , d

−
k and natural numbers N3 and rmax > r such that

d+
1 >

µn1

n
> d−1 > · · · > d+

r >
µnr
n

> d−r

and

d+
r+1 > µnr+1 > d−r+1 > · · · > d+

rmax+2 > µn,rmax+2 > d−rmax+2

for all n > N3.

C2′ is not particularly restrictive; however, it should be noticed that linear divergence of

the divergent eigenvalues rules out “weak” factors in the sense of Onatski (2010).
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We are now ready to introduce our estimator. To simplify notation, from now on we

write ΓT
n in place of ΓT

n (0) (see equation (3)) to denote the sample variance-covariance

matrix of xnt, i.e., ΓT
n = (T )−1

∑T
t=1 xntx

′
nt. Moreover, let µTnk be the k-th eigenvalue of

ΓT
n . Our DR criterion function is

DRT
n (k) =

µTnk − µTn,k+1

µTn,k+1 − µTn,k+2

.

The estimator r̂TnDR is defined as the value of k which maximizes DRT
n (k), for 1 ≤ k ≤ rmax,

i.e.,

r̂TnDR = arg max
1≤k≤rmax

DRT
n (k).

In the Appendix we prove the following consistency result.

Theorem 3. Let n and T go to infinity so that limnT−1/2 = 0. Then, under Assumptions

A1-A5, B2, C1 and C2′, if r ≥ 1, we have

plimm→∞ r̂
T
nDR = r

for m = min(n, T ).

Consistency of Ahn and Horenstein criteria ER and GR can be proved for the present

setting along the lines of Theorem 3. The assumption of T growing faster than n can

be found, for example, in Onatski (2009) even if it is not in the spirit of the literature.

However, we show in the simulations that our statistics work well even when n is much

larger than T . Hence, to evaluate the performance of the DR criterion we run a simulation

exercise. We use the following four DGPs.

DGP1. Same as Ahn and Horenstein (2013), first part, case (d). With reference to

equation (6), we set r = q, N(L) = Ir, so that ft = ut, with entries fjt ∼ N (0, 1). The

entries of Λ are iid N (0, 1). The idiosyncratic components are generated as

ξit =

√
1− ρ2

1 + 2Jβ2
eit,

where eit = ρei,t−1 + vit +
∑i−1

h=max(i−J,1) βvht +
∑min(i+J,n)

h=i+1 βvht, with vht h = 1, . . . , n

standard normal i.i.d., β = 0.2, J = min(10, N/20), ρ = 0.5.

DGP2. As in DGP1, r = q, N(L) = Ir, but the factors fjt, j = 1, . . . , r are inde-

pendent gaussian white noises with standard deviations σj ∼ U[0.2,1.2]. The idiosyncratic

components are independent, unit variance, gaussian white noises.

DGP3. As in GDP1 and GDP2, we set r = q, but here N(L) is a diagonal matrix

having on the diagonal the AR(1) filter

σj
√

1− ρ2
j

1− ρjL
,
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so that (1 − ρjL)fjt = σj
√

1− ρ2
jujt. Here ρj ∼ iid U[−0.8,0.8] and σj ∼ U[1,1.4]. In such a

way the factor fjt has standard deviation σj. The loadings in Λ are iid U[−1,1].

The idiosyncratic components are as in the second and third experiments of Section 5,

i.e. ξit = ρi ξit−1+vit, vit = ρvi−1t+εit, where ρi ∼ iid U[−.8,.8], ρ = 0.2 and εit ∼ iidN (0, 1).

DGP4. Same as DGP3, but σj ∼ U[0.6,1.8]. In this model, unlike the previous one, the

fit’s may have very different variance, so that there are both “strong” and “weak” factors.

We produce data sets with r = 2, 4 and 6 and (n, T )= (50, 80), (120, 80), (50, 240),

(120, 240), (240, 480). We set rmax = 10 and compute Ahn and Horenstein estimators

(ER and GR), along with the DR estimator.

Table 5 shows the percentage of correct estimates over 1000 replications. The maximal

difference between ER and GR is 0.3% so that, to save space, we report results only for

ER.

With DGP2 and DGP4, DR outperforms ER (and GR). This is because DR is more

able than ER and GR in detecting weak factors, which characterize DGP2 and DGP4. Our

intuition is that the bounded eigenvalues are usually very close to each other, compared to

the diverging ones: ER and GR do not exploit this fact, whereas DR does. On the other

hand, with DGP1, where the factors have the same variance, and DGP3, where the factors

have similar variances, ER (like GR) outperforms DR, so that the static version of the

difference ratio estimator, unlike the dynamic version, does not dominate the competing

criteria.

Our conclusion is that the DR estimator may be a valid alternative to ER and GR

when the researcher suspects that there are weak common factors driving the data.

7. An empirical illustration

In this section we present an empirical illustration based on US macroeconomic data.

The literature is controversial about the number of dynamic factors driving the macroe-

conomy. With regard to US macro data, the analysis of Stock and Watson (2005) finds

seven static factors and seven dynamic ones. Giannone et al. (2005) finds evidence sup-

porting the existence of only two dynamic factors. Hallin and Lǐska (2007) base their

analysis on the IC2 criterion (with penalty p1 and MT = [.75
√
T ]) and find four factors.

Onatski (2009) performs his test on Stock and Watson (2002a) macroeconomic data and

does not reject the null hypothesis of two dynamic factors.

Clearly, a very small number of dynamic factors, like one or two, is at odds with both

modern DSGE models and empirical macroeconomic analysis based on structural VARs,

FAVARs or factor models, which usually assume several different structural sources of

variation hitting the economy (demand, supply, technology, policy and so on).

We consider the macro data set for estimating factors available in the FRED website.

The final sample turns out to be composed of n = 111 monthly time series from January
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1973 to December 2011 (T = 468). The full list of variables along with the corresponding

transformations (first differences of levels, logs or first differences of logs) is reported in

Appendix B.

Figure 2, left column, plots the lag-window estimators DER(k), DGR(k) and DDR(k)

obtained with qmax = 10, Bartlett window, 9 lags (upper panel) and 16 lags (lower panel).

DDR peaks at 4 dynamic factors, while DER and DGR estimate either 1 or 2 dynamic

factors, respectively. Similar conclusions hold for the periodogram-smoothing versions of

the three criteria, Daniell window, 16 points (upper panel) and 32 points (lower panel).

With the same qmax, the HL criterion (same version used in the simulation exercise) gives

q = 4 and Onatski’s test gives q = 3.

Figure 3 plots the estimated number of dynamic factors as a function of qmax; the lag-

window and the periodogram-smoothing estimators are shown in the left and the right

panel, respectively. The figure shows that all estimators are insensitive to the choice of

qmax.

Figure 4, left panel, plots the static factor estimators ER(k), GR(k) and DR(k) ob-

tained with rmax = 20. The DR criterion reaches its maximum for k = 8, in line with

Stock and Watson (2005) and Bai and Ng (2007), who find 7 static factors. By contrast,

both Ahn and Horenstein criteria (ER and GR) are relatively flat and peak at k = 2. A

possible interpretation is that ER and GR cannot recognize small factors present in the

data, in line with the simulation exercise of the previous section. These results are robust

to the choice of rmax (right panel).

8. Conclusion

This paper proposes new criteria to determine the number of dynamic factors in the gen-

eralized factor model, as well as a new criterion to determine the number of static factors

in a static factor model. Such estimators are based on eigenvalue ratios. Their advan-

tage is that they do not have either penalty functions or nuisance parameters requiring

preliminary calibration and/or discretionary choices. We have established consistency of

such estimators, as the minimum of n and T approach infinity. We have provide simu-

lation exercises showing that our DDR and DR criteria are valid alternatives to existing

estimators.

Appendix A

Proof of Theorem 1. We must show that, for k = 1, . . . , q − 1, q + 1, . . . , qmax,

DERn(k) < DERn(q)

for all n larger than some N . By Assumption A5(i), for k = 1, . . . , q − 1, q + 1, . . . , qmax,

DERn(k) is Op(1), since, if n > N1, λnk/λn,k+1 < c+
k /c

−
k+1. On the other hand, for n > N1,



22

DERn(q) = λnq/λn,q+1 > nc−q /c
+
q+1. The result follows. Coming to DGRn(k), consider

the inequalities

(a1)
α

1 + α
≤ ln(1 + α) < α α ∈ (0,∞).

Using these inequalities and Assumption A5(i), for k = 1, . . . , q − 1, q + 1, . . . , qmax and

n > N1, we have

DGRn(k) =
ln(1 + λ̃nk)

ln(1 + λ̃n,k+1)
<

λ̃nk

λ̃n,k+1/(1 + λ̃n,k+1)
=

λnk
λn,k+1

<
c+
k

c−k+1

.

On the other hand, we have

(a2) DGRn(q) =
ln(1 + λ̃nq)

ln(1 + λ̃n,q+1)
>
λ̃nq/(1 + λ̃nq)

λ̃n,q+1

=
λnq
λn,q+1

Vn(q + 1)

Vn(q − 1)
.

But the last ratio on the right-hand side is bounded away from zero by A5(i) and (ii).

Precisely, if n > max(N1, N2),

Vn(q + 1)

Vn(q − 1)
=
n−1(Vn(q)− λn,q+1)

n−1(Vn(q) + λnq)
>
c− n−1c+

q+1

c+
q+1 + c+

q

> 0.

Moreover, for n > N1, λnq/λn,q+1 > nc−q /c
+
q+1. The result follows. Finally, let us consider

q̂nDDR. By Assumption A5(i),

DDRn(k) =
λnk − λn,k+1

λn,k+1 − λn,k+2

<
c+
k

c−k+1 − c
+
k+2

,

for 0 < k < q − 1, q < k ≤ qmax, n > N1. Moreover, for n > N1,

DDRn(q − 1) =
λn,q−1 − λnq
λnq − λn,q+1

<
c+
q−1

c−q − c+
q+1/n

.

On the other hand,

DDRn(q) =
λnq − λn,q+1

λn,q+1 − λn,q+2

>
nc−q − c+

q+1

c+
q+1

.

This concludes the proof. �

Proof of Theorem 2. We use the following result proved in Hallin and Lǐska (2007),

Corollary A.1. Let Assumption A1, A2, B1 and B2 hold. Then for any ε > 0 there exist

Mε and Tε such that for any fixed qmax, n and T > Tε

max
1≤k≤qmax

sup
θ∈[−π,π]

P

(
min(M2

T ,M
−1/2
T T 1/2)

∣∣∣∣λTnk(θ)n
− λnk(θ)

n

∣∣∣∣ > Mε

)
≤ ε.
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This gives
λTnk(θ)

n
=
λnk(θ)

n
+Op(M

∗
T )

uniformly in n and θ ∈ [−π, π], where M∗
T = max(M−2

T ,M
1/2
T T−1/2) goes to zero as

T →∞. Thus we get

(a3)
2π

2MT + 1

MT∑
h=−MT

λTnk(θh)

n
=

2π

2MT + 1

MT∑
h=−MT

λnk(θh)

n
+Op(M

∗
T ).

The term on the left hand-side is the middle Riemann sum of the function λnk(θ)/n over

a partition of [−π, π] made up by 2MT + 1 sub-intervals of equal length 2π/(2MT + 1).

Standard results from calculus theory and numerical integration easily imply that

(a4)

∣∣∣∣∣λnkn − 2π

2MT + 1

MT∑
h=−MT

λnk(θh)

n

∣∣∣∣∣ ≤ 4π2

2MT + 1

Ln
n

where

Ln = max
1≤k≤qmax

sup
θ∈[−π,π]

∣∣∣∣dλnk(θ)dθ

∣∣∣∣ .
Assumptions A5(iii) and B2 guarantee the existence and boundedness (uniformly in n) of

the above first derivative since supn∈N Ln/n ≤ supn∈N supθ∈[−π,π]
1
n
||dΣ(θ)

dθ
|| <∞ (see Kato,

1982 and Overton and Womersley, 1995). It follows that

(a5)

2π

2MT + 1

MT∑
h=−MT

λTnk(θh)

n
− λnk

n
=

2π

2MT + 1

[
MT∑

h=−MT

λTnk(θh)

n
−

MT∑
h=−MT

λnk(θh)

n

]

+
2π

2MT + 1

MT∑
h=−MT

λnk(θh)

n
− λnk

n

As T →∞, the first and second summands of (a5) go to zero by (a3) and (a4), respectively,

uniformly in n. So, the left hand-side of (a5) converges to zero as T → ∞, uniformly

in n. Hence DERT
n (k)

p→ DERn(k), DGRT
n (k)

p→ DGRn(k) and DDRT
n (k)

p→ DDRn(k),

provided that limnM∗−1
T = 0 as n and T go to infinity. Then the result follows from

Theorem 1. �

Proof of Theorem 3. Firstly, let us introduce some notation and preliminary results. If

A is a symmetric matrix we denote by µj(A) the jth eigenvalue of A in decreasing order.

Given a matrix B, ||B||2 denotes the spectral norm of B; thus ||B||2 =
√
µ1(BB′), which

is the Euclidean norm if B is a row matrix. We will make use of the following inequality,
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which is a consequence of Weyl’s inequality (see, e.g., Stewart and Sun, 1990, Cor. 4.10,

p. 203): if A and B are two s× s symmetric matrices, then for j = 1, . . . , s,

(a6) |µj(A+B)− µj(A)| ≤
√
µ1(B2) = ||B||2.

Now, we prove the following result

1

n
||ΓTn − Γn||2 = Op(T

−1/2)

uniformly in n. In fact, we have

1

n2
||ΓTn − Γn||22 =

1

n2
µ1[(ΓTn − Γn)(ΓTn − Γn)

′
]

≤ 1

n2
||ΓTn − Γn||2F =

1

n2
tr[(ΓTn − Γn)(ΓTn − Γn)

′
]

=
1

n2

n∑
i=1

n∑
j=1

(γTn,ij − γn,ij)2 ≤ sup
i,j

(γTn,ij − γn,ij)2

where Γn = (γn,ij), ΓTn = (γTn,ij) and || · ||F denotes the Frobenius norm. Using Chebyshev

inequality, we get

(γTn,ij − γn,ij)2 ≤ var(γTn,ij) = E(γTn,ij − γn,ij)2

as E(γTn,ij) = γn,ij (see, for example, Priestley 1981, p.325). Using results from Priestley

(1981), p.326, and Hannan (1970), p.209, we have

var(γTn,ij) =
1

T

T−1∑
m=−T+1

[
1− |m|

T

]
{γn,ii(m)γn,jj(m) + γn,ij(m)γn,ji(m) + cijij(0,m,m)}

where Γn(m) = E(xntx
′
n,t−m) = (γn,ij(m)). Here cijij(0,m,m) is the cumulant ci1,...,i4(k1, k2, k3),

where i1 = i3 = i, i2 = i4 = j, k1 = 0 and k2 = k3 = m. Then

1

n2
||ΓTn − Γn||22 ≤ sup

i,j
(γTn,ij − γn,ij)2 ≤ sup

i,j
var(γTn,ij)

≤ 1

T
sup
i,j

∞∑
m=−∞

{|γn,ii(m)||γn,jj(m)|+ |γn,ij(m)||γn,ji(m)|}+
1

T
sup
i,j

∞∑
m=−∞

|cijij(0,m,m)|

<
1

T
ρ <∞

for some positive real number ρ, uniformly in n. The upper bound follows from Assump-

tion A2. Secondly, we prove that

µTnk
n

=
µnk
n

+Op(T
−1/2)
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uniformly in n. In fact, by using Weyl inequality with A = Γn and B = ΓTn−Γn we obtain

1

n
|µTnk − µnk| ≤

1

n
||ΓTn − Γn||2

Using the first result of the proof, the previous statement follows. Finally, we make use

of these results to prove the statement in Theorem 3. By Assumption C2
′

in Section 6,

DRn(k) =
µnk − µn,k+1

µn,k+1 − µn,k+2

<
d+
k

d−k+1 − d
+
k+2

for 0 < k < r − 1, r < k ≤ rmax, n > N3. Moreover, for n > N3,

DRn(r − 1) =
µn,r−1 − µnr
µnr − µn,r+1

<
d+
r−1

d−r − d+
r+1/n

and

DRn(r) =
µnr − µn,r+1

µn,r+1 − µn,r+2

>
nd−r − d+

r+1

d+
r+1

Then DRT
n (k) converges to DRn(k) as T goes to infinity, uniformly in n using the assump-

tion limnT−1/2 = 0. Given the above inequalities, the statement of the theorem follows.

�
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Appendix B

US Macroeconomic Data - Transformations (T): 1=levels, 2=first differences of levels,

3=logs, 4=first differences of logs.

No. MNEMONIC LONG LABEL T

1 AAA Moody’s Seasoned Aaa Corporate Bond Yield 1

2 AAAFFM Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate 1

3 AMBSL St. Louis Adjusted Monetary Base 2

4 AWHMAN Average Weekly Hours of Production and Nonsupervisory Employees: Manufacturing 1

5 AWOTMAN Average Weekly Overtime Hours of Production and Nonsupervisory Employees: Manufacturing 1

6 BAA Moody’s Seasoned Baa Corporate Bond Yield 1

7 BAAFFM Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate 1

8 BUSLOANS Commercial and Industrial Loans, All Commercial Banks 4

9 CE16OV Civilian Employment 3

10 CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing 1

11 CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees: Goods-Producing 2

12 CES1021000001 All Employees: Mining and Logging: Mining 4

13 CES2000000008 Average Hourly Earnings of Production and Nonsupervisory Employees: Construction 4

14 CES3000000008 Average Hourly Earnings of Production and Nonsupervisory Employees: Manufacturing 4

15 CLF16OV Civilian Labor Force 3

16 CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel 4

17 CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 4

18 CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care 4

19 CPITRNSL Consumer Price Index for All Urban Consumers: Transportation 4

20 CPIULFSL Consumer Price Index for All Urban Consumers: All Items Less Food 4

21 CUSR0000SA0L5 Consumer Price Index for All Urban Consumers: All items less medical care 4

22 CUSR0000SAC Consumer Price Index for All Urban Consumers: Commodities 4

23 CUSR0000SAS Consumer Price Index for All Urban Consumers: Services 4

24 CUUR0000SA0L2 Consumer Price Index for All Urban Consumers: All items less shelter 4

25 CUUR0000SAD Consumer Price Index for All Urban Consumers: Durables 4

26 DDURRG3M086SBEA Personal consumption expenditures: Durable goods (chain-type price index) 4

27 DMANEMP All Employees: Durable goods 1

28 DNDGRG3M086SBEA Personal consumption expenditures: Nondurable goods (chain-type price index) 4

29 DPCERA3M086SBEA Real personal consumption expenditures (chain-type quantity index) 4

30 DSERRG3M086SBEA Personal consumption expenditures: Services (chain-type price index) 4

31 EXCAUS Canada / U.S. Foreign Exchange Rate 1

32 EXJPUS Japan / U.S. Foreign Exchange Rate 1

33 EXSZUS Switzerland / U.S. Foreign Exchange Rate 1

34 EXUSUK U.S. / U.K. Foreign Exchange Rate 1

35 FEDFUNDS Effective Federal Funds Rate 1

36 GS1 1-Year Treasury Constant Maturity Rate 1

37 GS10 10-Year Treasury Constant Maturity Rate 1

38 GS5 5-Year Treasury Constant Maturity Rate 1

39 HOUST Housing Starts: Total: New Privately Owned Housing Units Started 4

40 HOUSTMW Housing Starts in Midwest Census Region 4

41 HOUSTNE Housing Starts in Northeast Census Region 4

42 HOUSTS Housing Starts in South Census Region 4

43 HOUSTW Housing Starts in West Census Region 4

44 INDPRO Industrial Production Index 4

45 IPBUSEQ Industrial Production: Business Equipment 4

46 IPCONGD Industrial Production: Consumer Goods 4

47 IPDCONGD Industrial Production: Durable Consumer Goods 4

48 IPDMAT Industrial Production: Durable Materials 4

49 IPFINAL Industrial Production: Final Products (Market Group) 4

50 IPFPNSS Industrial Production: Final Products and Nonindustrial Supplies 4
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No. MNEMONIC LONG LABEL T

51 IPFUELS Industrial Production: Fuels 4

52 IPMANSICS Industrial Production: Manufacturing (SIC) 4

53 IPMAT Industrial Production: Materials 4

54 IPNCONGD Industrial Production: Nondurable Consumer Goods 4

55 IPNMAT Industrial Production: nondurable Materials 4

56 M1SL M1 Money Stock 4

57 M2REAL Real M2 Money Stock 4

58 M2SL M2 Money Stock 4

59 MABMM301USM189S M3 for the United States 2

60 MANEMP All Employees: Manufacturing 1

61 NAPM ISM Manufacturing: PMI Composite Index 1

62 NAPMEI ISM Manufacturing: Employment Index 1

63 NAPMII ISM Manufacturing: Inventories Index 1

64 NAPMNOI ISM Manufacturing: New Orders Index 1

65 NAPMPI ISM Manufacturing: Production Index 1

66 NAPMPRI ISM Manufacturing: Prices Index 1

67 NAPMSDI ISM Manufacturing: Supplier Deliveries Index 1

68 NDMANEMP All Employees: Nondurable goods 1

69 NONBORRES Reserves Of Depository Institutions, Nonborrowed 2

70 OILPRICE Spot Oil Price: West Texas Intermediate 4

71 PAYEMS All Employees: Total nonfarm 4

72 PCEPI Personal Consumption Expenditures: Chain-type Price Index 4

73 PERMIT New Private Housing Units Authorized by Building Permits 4

74 PERMITMW New Private Housing Units Authorized by Building Permits in the Midwest Census Region 4

75 PERMITNE New Private Housing Units Authorized by Building Permits in the Northeast Census Region 4

76 PERMITS New Private Housing Units Authorized by Building Permits in the South Census Region 4

77 PERMITW New Private Housing Units Authorized by Building Permits in the West Census Region 4

78 PI Personal Income 4

79 PPICMM Producer Price Index: Commodities: Metals and metal products: Primary nonferrous metals 4

80 PPICRM Producer Price Index: Crude Materials for Further Processing 4

81 PPIFCG Producer Price Index: Finished Consumer Goods 4

82 PPIFGS Producer Price Index: Finished Goods 4

83 PPIITM Producer Price Index: Intermediate Materials: Supplies and Components 4

84 REALLN Real Estate Loans, All Commercial Banks 4

85 RPI Real Personal Income 4

86 SRVPRD All Employees: Service-Providing Industries 4

87 T10YFFM 10-Year Treasury Constant Maturity Minus Federal Funds Rate 1

88 T1YFFM 1-Year Treasury Constant Maturity Minus Federal Funds Rate 1

89 T5YFFM 5-Year Treasury Constant Maturity Minus Federal Funds Rate 1

90 TB3MS 3-Month Treasury Bill: Secondary Market Rate 1

91 TB3SMFFM 3-Month Treasury Bill Minus Federal Funds Rate 1

92 TB6MS 6-Month Treasury Bill: Secondary Market Rate 1

93 TB6SMFFM 6-Month Treasury Bill Minus Federal Funds Rate 1

94 TOTRESNS Total Reserves of Depository Institutions 2

95 TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies 5

96 UEMP15OV Number of Civilians Unemployed for 15 Weeks and Over 2

97 UEMP15T26 Number of Civilians Unemployed for 15 to 26 Weeks 2

98 UEMP27OV Number of Civilians Unemployed for 27 Weeks and Over 2

99 UEMP5TO14 Number of Civilians Unemployed for 5 to 14 Weeks 2

100 UEMPLT5 Number of Civilians Unemployed - Less Than 5 Weeks 2

101 UEMPMEAN Average (Mean) Duration of Unemployment 2

102 UNEMPLOY Unemployed 2

103 UNRATE Civilian Unemployment Rate 1

104 USCONS All Employees: Construction 4

105 USFIRE All Employees: Financial Activities 4

106 USGOOD All Employees: Goods-Producing Industries 4

107 USGOVT All Employees: Government 4

108 USTPU All Employees: Trade, Transportation and Utilities 4

109 USTRADE All Employees: Retail Trade 4

110 USWTRADE All Employees: Wholesale Trade 4

111 W875RX1 Real personal income excluding current transfer receipts 4
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Tables

q n T HL O DER DGR DDR DER∗ DGR∗ DDR∗

MA loadings

2 60 100 99 62 80 92 98 80 92 97

100 100 99 79 86 97 99 89 97 99

70 120 99 67 85 96 99 86 97 99

120 120 99 87 96 99 100 96 99 100

150 120 100 88 97 100 100 97 100 100

3 60 100 60 30 24 46 69 27 45 71

100 100 92 40 25 57 87 32 56 83

70 120 94 32 36 59 85 37 59 84

120 120 99 38 43 68 94 39 68 96

150 120 99 45 44 72 96 44 71 95

AR loadings

2 60 100 94 82 83 93 95 83 92 97

100 100 99 94 87 94 98 87 94 99

70 120 100 91 89 95 98 88 94 98

120 120 100 97 96 98 100 94 98 100

150 120 100 97 96 99 100 95 98 100

3 60 100 34 44 40 51 63 44 53 68

100 100 62 60 51 64 80 51 65 82

70 120 71 56 51 63 79 46 61 78

120 120 92 76 64 77 91 60 76 91

150 120 94 79 62 78 94 58 76 94

Table 1: First experiment described in Section 5. Percentage of correct outcomes over 500

replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009) estimator, DER, DGR

and DDR: lag window version of our estimators described in Section 4.1, DER∗, DGR∗ and

DDR∗: periodogram smoothing version of our estimators described in Section 4.2. Boldface

numbers denote the estimator(s) which perform best in each row.
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n T σ2 HL O DER DGR DDR DER∗ DGR∗ DDR∗

MA loadings

70 70 1 100 100 100 100 100 99 93 100

70 70 2 96 100 90 97 100 91 96 99

70 70 4 1 90 50 59 80 50 63 79

100 120 1 100 100 100 100 100 100 100 100

100 120 2 100 100 100 100 100 99 100 100

100 120 6 2 96 53 63 88 55 64 88

150 500 1 100 100 100 100 100 100 100 100

150 500 8 100 100 98 99 100 99 99 100

150 500 16 35 97 38 46 91 47 55 95

AR loadings

70 70 1 98 98 96 99 100 85 92 99

70 70 2 86 91 84 90 98 67 75 95

70 70 4 13 66 61 71 85 45 54 79

100 120 1 100 98 100 100 100 99 100 100

100 120 2 100 98 98 99 100 96 98 100

100 120 6 45 83 78 83 97 77 81 96

150 500 1 100 99 100 100 100 100 100 100

150 500 8 100 99 99 100 100 99 99 100

150 500 16 99 92 91 93 100 82 85 99

Table 2: Second experiment described in Section 5. Percentage of correct outcomes over 500

replications. HL: Hallin and Lǐska (2007) estimator, O: Onatski (2009) estimator, DER, DGR

and DDR: lag window version of our estimators described in Section 4.1, DER∗, DGR∗ and

DDR∗: periodogram smoothing version of our estimators described in Section 4.2. Boldface

numbers denote the estimator(s) which perform best in each row.
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q n T HL O DER DGR DDR DER∗ DGR∗ DDR∗

Large idiosyncratic components

2 50 80 74 82 83 91 99 78 89 97

120 80 100 94 96 99 100 93 98 100

50 240 100 99 99 100 100 99 100 100

120 240 100 100 100 100 100 100 100 100

240 480 98 100 100 100 100 100 100 100

4 50 80 0 16 3 10 27 2 6 22

120 80 1 27 12 30 65 6 17 47

50 240 8 40 54 77 86 44 66 82

120 240 100 93 100 100 100 100 100 100

240 480 97 100 100 100 100 100 100 100

6 50 80 0 10 0 1 6 0 0 6

120 80 0 10 0 1 10 0 0 6

50 240 0 15 2 11 24 1 4 16

120 240 98 35 45 73 90 26 57 85

240 480 92 99 100 100 100 100 100 100

Small idiosyncratic components

2 50 80 100 89 98 100 100 97 100 99

120 80 96 89 100 100 100 100 100 99

50 240 100 100 100 100 100 100 100 100

120 240 58 100 100 100 100 100 100 100

240 480 11 100 100 100 100 100 100 100

4 50 80 8 35 37 68 74 35 56 58

120 80 83 45 73 89 93 60 78 82

50 240 100 88 100 100 100 99 100 100

120 240 97 100 100 100 100 100 100 100

240 480 84 100 100 100 100 100 100 100

6 50 80 0 16 1 10 17 2 4 14

120 80 0 14 4 18 33 3 6 26

50 240 9 38 80 93 94 69 89 87

120 240 99 82 100 100 100 100 100 100

240 480 94 100 100 100 100 100 100 100

Table 3: Third experiment described in Section 5, case (a), i.e. common shocks with equal

variance. Percentage of correct outcomes over 500 replications. HL: Hallin and Lǐska (2007)

estimator, O: Onatski (2009) estimator, DER, DGR and DDR: lag window version of our es-

timators described in Section 4.1, DER∗, DGR∗ and DDR∗: periodogram smoothing version

of our estimators described in Section 4.2. Boldface numbers denote the estimator(s) which

perform best in each row.
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q n T HL O DER DGR DDR DER∗ DGR∗ DDR∗

Large idiosyncratic components

2 50 80 71 76 73 85 96 67 81 93

120 80 100 92 92 97 100 87 96 100

50 240 100 97 99 100 100 98 99 100

120 240 100 100 100 100 100 100 100 100

240 480 98 100 100 100 100 100 100 100

4 50 80 0 14 3 9 20 1 3 17

120 80 0 27 8 24 58 4 13 43

50 240 5 36 40 64 82 33 56 78

120 240 100 87 96 99 100 92 97 100

240 480 97 100 100 100 100 100 100 100

6 50 80 0 7 0 0 8 0 0 5

120 80 0 10 0 0 7 0 0 7

50 240 0 15 0 4 16 0 2 16

120 240 95 33 30 61 83 17 43 75

240 480 94 99 100 100 100 100 100 100

Small idiosyncratic components

2 50 80 99 88 94 99 99 94 99 99

120 80 92 86 97 100 99 98 100 99

50 240 100 100 100 100 100 100 100 100

120 240 45 100 100 100 100 100 100 100

240 480 5 100 100 100 100 100 100 100

4 50 80 5 29 29 54 65 23 44 51

120 80 76 36 53 78 85 46 67 68

50 240 98 84 99 100 100 99 99 100

120 240 96 99 100 100 100 100 100 100

240 480 73 100 100 100 100 100 100 100

6 50 80 0 12 1 6 14 1 2 12

120 80 0 20 3 17 31 2 3 20

50 240 6 33 64 87 87 52 78 80

120 240 99 76 100 100 100 98 99 100

240 480 94 100 100 100 100 100 100 100

Table 4: Third experiment described in Section 5, case (b), i.e. common shocks with different

variances. Percentage of correct outcomes over 500 replications. HL: Hallin and Lǐska (2007)

estimator, O: Onatski (2009) estimator, DER, DGR and DDR: lag window version of our es-

timators described in Section 4.1, DER∗, DGR∗ and DDR∗: periodogram smoothing version

of our estimators described in Section 4.2. Boldface numbers denote the estimator(s) which

perform best in each row.
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DGP1 DGP2 DGP3 DGP4

r n T ER DR ER DR ER DR ER DR

2 50 80 81 43 62 83 95 86 65 71

120 80 100 91 73 93 100 95 77 88

50 240 92 40 71 95 100 95 77 87

120 240 100 98 78 99 100 99 89 98

240 480 100 99 87 100 100 100 98 100

4 50 80 61 28 40 70 94 76 44 56

120 80 100 88 55 88 100 94 66 81

50 240 77 28 54 87 100 92 68 78

120 240 100 97 68 98 100 99 90 96

240 480 100 99 85 100 100 100 99 100

6 50 80 47 24 35 63 90 71 38 45

120 80 100 84 49 85 100 90 70 71

50 240 54 24 51 86 100 91 66 74

120 240 100 97 70 98 100 99 94 94

240 480 100 99 91 100 100 100 100 99

Table 5: Simulation experiment described in Section 6. Percentage of correct outcomes over

500 replications. ER: Ahn and Horestein (2013) Eigenvalue Ratio estimator; DR: the eigenvalue

Difference Ratio estimator described in Section 6.
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Figure 2: Dynamic eigenvalue ratio estimators. Left column: lag-window criteria DERT
n (k), DGRT

n (k)

and DDRT
n (k) as functions of k, window sizes 9 (upper panel) and 16 (lower panel). Right column:

periodogram smoothing criteria DER∗Tn (k), DGR∗Tn (k) and DDR∗Tn (k) as functions of k, bandwidth 16

points (upper panel) and 32 points (lower panel). The data set includes 111 US macroeconomic time

series from January 1973 to December 2011. Source: FRED database.
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Figure 3: : Left panel: estimated number of factors as functions of qmax, lag-window estimators (16

lags). Right panel: estimated number of dynamic factors as functions of qmax, periodogram-smoothing

estimators (16 points). The data set includes 111 US macroeconomic time series from January 1973 to

December 2011. Source: FRED database.

Figure 4: Static eigenvalue ratio estimators. Left panel: eigenvalue ratio criteria ERT
n (k), GRT

n (k) and

DRT
n (k) as functions of k. Right panel: estimated number of static factors as functions of rmax. The data

set includes 111 US macroeconomic time series is from January 1973 to December 2011. Source: FRED

database.
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