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Abstract

In this study, we use data on European stocks to construct a green-minus-brown

portfolio hedging climate risk and to evaluate its performance in terms of cumulative

expected and unexpected returns. More specifically, we estimate a Structural Panel

VAR fitted to one month return and realized volatility computed for 40 constituents

of a green portfolio (i.e., the low carbon emission portfolio monitored by Refinitiv)

and for 41 constituents of a brown portfolio (underlying the Oil&Gas and Utilities

industry sectors of the STOXX Europe 600). The common shocks underlying the

cross-sectional averages, interpreted as portfolio shocks, are retrieved in a first stage

of the analysis and they are used to control for cross-sectional dependence. We

compute the historical decomposition (for cumulative returns) in a second stage of

the analysis and we find, in line with Pástor, L., Stambaugh, R. F., & Taylor, L. A.

(2022). Dissecting green returns. Journal of Financial Economics, 146 (2), 403–424,

an out-performance of the expected component of the brown portfolio relative to

the one for the green portfolio, and an out-performance of the green portfolio when

we turn our focus on the unexpected component. We also extend the analysis of

Pástor et al. (2022), assessing, for the top 5 constituents of the green portfolio

(e.g., those which are found to have the worst performance in terms of expected

return), the role played by idiosyncratic shocks in shaping their out-performance

in terms of unexpected component. Finally, after exploiting the non-gaussian time

series properties of the financial time series considered for the purpose of statistical

identification, we are able to interpret ex post the idiosyncratic shocks in terms of

financial leverage and risk aversion.
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1 Introduction

The role of investment in equities to hedge climate risk has recently gained popularity. Stock

prices reflect expectations about the future impact of climate change on the macroeconomy.

In particular, cash flow effects of temperature shocks arise given their impact on labour

productivity and labour supply (especially in some sectors) and they are discounted in

stock prices. While the study of Bansal et al. (2019) shows that growth stocks are those

mostly vulnerable to climate risk since they are exposed to long-run risk, a number of

studies rely on environmental scores, carbon emission or industry classification in detecting

the stocks (e.g., green and brown) more vulnerable to climate risk. In particular, while

the study of Bolton and Kacperczyk (2021) finds that stocks of firms with higher carbon

emissions (but not with high emission intensity) earn higher risk-adjusted returns, Görgen

et al. (2020) find an insignificantly negative carbon premium when they combine multiple

carbon-emission-related measures. Pástor et al. (2022) disentangle the expected and

unexpected components of a green-minus-brown, climate risk hedging portfolio, and find

evidence of a switch in the sign (from negative to positive) of the risk premium when

turning the focus from the expected component of (cumulative) returns to the unexpected

one associated with news arrival.1 More specifically, according to Pástor et al. (2021),

the excess return of a climate hedging portfolio (green-minus-brown) is the sum of a risk

premium and a taste premium. The former is associated with the hedging properties of

investors and the latter is associated with the appetite for green assets. While the hedging

properties of the green portfolio lead to a negative expected excess return, increasing

climate concerns can raise investors’ demand for green assets, driving up green asset prices.

Moreover, environmental regulations can boost demand for green products, driving up

green firms’ profits and thus their stock prices. While the previous studies focus on the

US, the study of Bua et al. (2022) focuses on Europe and the authors find an increasing

role played by physical and transition climate risk since the Paris Agreement (December

2015) on climate change. More specifically, the authors find a relatively higher required

return is asked for stocks which provide a bad hedge against climate risk. In this study,

we focus on European stocks, and in particular, we consider a sample of 40 constituents

of a portfolio with a high environmental score monitored by Refinitiv and another one

given by 41 constituents underlying the Oil&Gas and Utilities industry sectors of the

1Shocks to an index of climate concern developed by Ardia et al. (2022) are the main driver of the
unexpected component of stock return. While Pástor et al. (2022) use the Ardia et al. (2022)’s index
computed on a monthly basis (see also Engle et al., 2020), the study of Ardia et al. (2022) relies on a
daily index of climate concern, disentangling the role of climate change transition and physical risk.
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STOXX Europe 600. The main contributions of our study are as follows. First, we rely on

an information set to compute the expected and the unexpected component of returns

which is given by a relatively large panel of one month return and realized volatilities

of stocks examined over the sample period 2010m6 − 2022m5. Second, we share with

Ludvigson and Ng (2007) the use of common factors (underlying two large datasets of

macro and financial variables) to investigate the model predictive performance for the

stock market return and, more generally, the risk-return relationship in the US. While

Ludvigson and Ng (2007) use a dynamic factor model to extract the aforementioned

common factors, we estimate a Panel VAR using the methodology put forward by Cesa-

Bianchi et al. (2020) which does not rely on the estimation of principal components but

on structural shocks underlying the dynamics of cross-sectional averages, to control for

cross-sectional dependence. In particular, the analysis of Cesa-Bianchi et al. (2020) is

split into two stages, where, in the first one, the contemporaneous values of the common

shocks (interpreted as portfolio shocks) are obtained through Structural VAR analysis

fitted to the cross-sectional averages of the two endogenous variables considered. The Panel

VAR is, then, estimated in the second stage, using, as exogenous variables, the lagged

values of the cross-sectional averages of the endogenous variables and the contemporaneous

common shocks retrieved in the first stage of the analysis. We find that the use of the

aforementioned exogenous variables to control for cross-sectional dependence improves

the predictive performance of the model for the return (and realized volatility) of each

portfolio constituent. The third contribution is the use of historical decomposition from

Panel VAR to retrieve the expected and unexpected components of portfolio returns and

the one for the constituents. In particular, in the second stage of the estimation analysis,

we obtain, through historical decomposition of the return series, the expected component,

showing, in line with Pástor et al. (2022), an out-performance of the cumulative return on

the brown portfolio relative to the green portfolio. The empirical findings suggest that

the green companies under investigation play a climate risk hedging role according to the

stock market. Moreover, in line with the theoretical and empirical findings of Pástor et al.

(2022), we find, through historical decomposition, an out-performance of the unexpected

component of the green portfolio (in terms of cumulative returns). Our final contribution is

related to the marginal contribution of the constituents to the green portfolio performance

(in terms of expected and unexpected cumulative returns). More specifically, we focus

on the top five constituents of the green portfolio in terms of climate risk hedging (e.g.,

those with the largest negative expected cumulative return relative to the brown portfolio)

and we examine, after controlling for common shocks, the role played by idiosyncratic
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shocks underlying their unexpected component. Finally, we are able to statistically identify

the idiosyncratic shocks (through the non-gaussian time series properties according to

the methodology put forward by Lanne et al., 2017): we interpret them, ex-post, as risk

aversion and financial leverage and we examine their contribution to the evolution over

time of the unexpected component.

The paper is organized as follows. Section 2 describes the empirical methodology. Section

3 discusses the data. Section 4 discusses the empirical evidence and Section 5 concludes.

2 Empirical model

Following Cesa-Bianchi et al. (2020), we estimate a structural Panel Factor-Augmented

Vector Autoregressions (VAR) fitted to monthly return (rit) and realized volatility (RVit)

of the N constituents entering either the green or the brown portfolio. The model is

estimated for each of the two portfolios, separately:

yit = µi +

p∑
ℓ=1

Φiℓyit−ℓ +∆iε̂t +

q∑
ℓ=1

Θiℓȳt−ℓ +Bi0ξit (1)

where yit = (r′it, RV ′
it)

′ is a 2 × 1 vector of endogenous variables observed for the i − th

constituent, with i = 1, . . . , N , at month t, µi is a 2 × 1 vector of intercept terms, Φiℓ,

for ℓ = 1, . . . , p, is a 2 × 2 matrix of slope coefficients. Moreover, we include in the

model specification a set of exogenous variables: (i) ε̂t is a 2 × 1 vector of estimated

orthogonal shocks extracted from common factors hitting the green and brown portfolios,

whose loadings are contained in the 2 × 2 matrix ∆i; (ii) ȳt−ℓ, for ℓ = 1, . . . , q, are the

lagged cross-sectional averages computed among the return and realized volatility of the

N constituents, with the associated coefficients contained in the 2× 2 matrix Θiℓ.
2 Finally,

Bi0 is a 2× 2 matrix containing the effects of the idiosyncratic structural shocks (ξit) on

the endogenous variables, such that uit = Bi0ξit, where uit is a 2 × 1 vector of serially

uncorrelated idiosyncratic reduced-form innovations.

In line with Cesa-Bianchi et al. (2020), to estimate the model in equation (1), we follow

a two-step approach. In the first step, we identify the structural common shocks (ε̂t) by

estimating an aggregated (i.e., portfolio-wide) VAR fitted to the cross-sectional averages

of the N constituents’ one month return and realized volatility (ȳt):

2As discussed in Cesa-Bianchi et al. (2020), since ε̂t are estimated using the lagged observations of the
cross-sectional averages (ȳt−ℓ) (see equation 2), it is important to filter out their effect.
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ȳt = µ+

p∑
ℓ=1

Aℓȳt−ℓ +B0εt (2)

where ȳt = (r̄′t, R̄V
′
t)

′ is a 2×1 vector of aggregated one month return and realized volatility.

These are computed as the cross-sectional weighted average of one month return, i.e.,

r̄t =
∑N

i=1wirit, and of realized volatility, i.e., R̄V t =
∑N

i=1 wiRVit, where wi is a vector of

weights, reflecting the importance of each i-th constituent within the two portfolios. For

both the green and brown portfolios, we set wi = 1/N , for i = 1, . . . , N .3 Furthermore,

µ is a 2 × 1 vector of constant terms, Aℓ, for ℓ = 1, . . . , p, is a 2 × 2 matrix of slope

coefficients, B0 is the 2× 2 structural impact multiplier matrix and εt is a 2× 1 vector of

structural shocks.

In the second step, for each of the N constituents entering either the green or brown port-

folio, we estimate the VAR augmented with the exogenous variables (VARX) (see equation

1). Then, we compute impulse response functions (to both common and idiosyncratic

shocks) and historical decomposition of rit and RVit. Both the aggregate SVAR and the

constituent-specific SVARX are estimated through maximum likelihood (ML) estimation

by assuming that the structural shocks are non-Gaussian.

2.1 Maximum likelihood estimation of the non-Gaussian SVAR

Both the aggregate SVAR and the Panel Factor-Augmented VAR are estimated by ML

under the non-Gaussianity assumption. For the sake of simplicity, we only describe the ML

estimator of the structural- and reduced-form parameters entering the aggregate SVAR

(see equation 2). However, the estimation approach discussed in the rest of this section

can be easily extended to the Panel Factor-Augmented VAR described in equation (1).

Given the data y−p+1, . . . , y0, y1, . . . , yT (where y−p+1, . . . , y0 is the initial condition) and

assuming a Student’s t-distribution of the error terms, the parameters of the SVAR in

equation (2), θ = (π, β, σ, λ), can be estimated by maximizing the following log-likelihood:

LT (θ) = T−1

T∑
t=1

lt(θ) (3)

where π = vec
(
[µ,A1, . . . , Ap]

)
is a 2(2p+1)×1 vector of the reduced-form VAR parameters,

3As described in Section 3, the Refinitiv Eurozone Low Carbon Select Index (i.e., the green portfolio)
is constructed by using an equally-weighted scheme, hence we assign equal weights to each constituent.
Moreover, since in our analysis, the brown portfolio is constructed by aggregating constituents from two
different industry sectors (i.e., Oil&Gas and Utilities sectors), we set their weights (wi) equal to 1/N .
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β = vecdo(B̃0) is a 2 × 1 vector containing the off-diagonal elements of B̃0, that is B0

with its main diagonal entries being normalized to unity, σ = (σ1, σ2) are the standard

deviations of the structural shocks and λ = (λ1, λ2) are the degree of freedom of the two

independent Student’s t-distributions. The log density lt(θ) is defined as follows:

lt(θ) =
2∑

i=1

log fi
(
σ−1
i e′iB̃0(β)

−1ut;λi

)
− log

(
det

(
B̃0(β)

))
−

2∑
i=1

log σi (4)

where fi is the density function of the Student’s t-distribution, ut are the reduced form

VAR residuals, such that ut = B0εt = B̃0Ω
1/2εt, where Ω1/2 = diag(σ1, σ2), and ei is the

i -th selection vector.4 In line with Lanne et al. (2017), we estimate the SVAR using a three-

step ML estimation.5 In the first step, we estimate the reduced form of VAR parameters

associated with the structural specification in equation (2) using OLS estimation (π̂LS).

In the second step, we estimate the normalized structural impact multiplier (B̃0), the

standard deviation of the structural shocks (σ) and the degree of freedom (λ), using the

OLS residuals obtained from the previous step. In particular, the structural parameters

are estimated by maximizing the following log-likelihood function:

LT (β, σ, λ) = LT (π̂
LS, β, σ, λ) = T−1

T∑
t=1

lt(π̂
LS, β, σ, λ) (5)

where the log density lt(π̂
LS, β, σ, λ) is obtained by replacing ut with the estimated reduced-

form residuals ûLS
t in equation (4). Maximizing the log-likelihood function in equation (5)

leads to the estimates of the structural parameters: β̂, σ̂ and λ̂. Finally, in the third step,

we estimate the reduced form of VAR parameters π = vec
(
[µ,A1, . . . , Ap]

)
, by using the

estimates of the structural parameters obtained in the previous step and by maximizing

the following log-likelihood function:

LT (π) = LT (π, β̂, σ̂, λ̂) = T−1

T∑
t=1

lt(π, β̂, σ̂, λ̂) (6)

with respect to π. This leads to the ML estimate of the reduced form of VAR parameters,

that is π̂ = vec
(
[µ̂, Â1, . . . , Âp]

)
.6

4See Lanne et al. (2017) for further details on the ML estimation for non-Gaussian SVAR.
5Our choice of Student’s t-distributed error terms is along the line of Lanne et al. (2017), which describe

how the three-step estimation approach is asymptotically efficient under the assumption of symmetry in
the error distribution.

6The codes used in our study are an adaptation of the R package svars developed by Lange et al.
(2021).
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The identification through non-Gaussianity has two desirable features for our empirical

analysis. First, as discussed by Lanne et al. (2017), this methodology allows computing

unique impulse responses without imposing any theory-driven restrictions (such as short- or

long-run zero exclusion restrictions, or sign-restrictions) on the response of the endogenous

variables to the structural shocks. However, identification through non-Gaussian errors

is a statistical tool, hence to give an economic interpretation of the structural shocks we

use ex-post theory-driven sign restrictions. Second, our empirical methodology involving

fat-tailed error distributions (i.e., independent Student’s t-distributions) is suitable for

financial market series showing potential outlier observations.7

Once obtaining the ML estimates of both the reduced and structural form of VAR

parameters, that is θ̂ = (π̂, β̂, σ̂, λ̂), we retrieve the structural shocks as follows ε̂t = B̂−1
0 ût.

Then, we include ε̂t as an exogenous term in the constituent-specific VARX, together with

the lagged cross-sectional averages of endogenous variables (see equation 1).8 The Panel

Factor-Augmented VAR is estimated by running ML estimation for each constituent-specific

VARX, separately.

2.2 Structural analysis

For both the green and brown portfolios, we compute the impulse responses to common

and idiosyncratic shocks and the historical decomposition of one month return and realized

volatility. Given a lag of order 2 (i.e., p = q = 2), let us re-write each i-th constituent-

specific VARX in equation (1) in its companion representation:

Yit = µi +ΦiYit−1 +∆iÊt +Θi1Ȳt−1 +Θi2Ȳt−2 +Bi0Ξit (7)

where Yit and Yit−1 are the 4 × 1 vector containing the endogenous variables observed

for each constituent i, Êt is a 4× 1 vector containing the common factors, Ȳt−1 and Ȳt−2

are the 4× 1 vector of lagged cross-sectional averages (q = 2) and Ξit is the 4× 1 vector

containing the idiosyncratic structural shocks. Moreover, Φi is the 4× 4 matrix containing

the slope coefficients, ∆i is the 4× 4 matrix containing the loadings associated with the

common factors, Θi1 and Θi2 are the 4× 4 matrices containing the coefficients associated

7Recently, a number of studies have shown the importance of using Student’s t-distributed errors in
VAR models to tackle large shocks, such as the recent Covid-19 pandemic, both for structural identification
and forecasting evaluation exercises (see e.g., Bobeica & Hartwig, 2023; Carriero et al., 2022, among
others).

8As described above, given that the common factors are identified also using lagged cross-sectional
averages of the endogenous variables, Cesa-Bianchi et al. (2020) point at the importance of including ȳt−ℓ

in equation (1).
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with the lagged cross-sectional averages, Bi0 is the 4 × 4 matrix containing the impact

multiplier coefficients, and µi is the 4× 1 vector containing the intercept terms.

The structural impulse response functions can be computed from the Moving Average

(MA) representation of the constituent-specific VARX (see Appendix A). More specifically,

for each i-th constituent, the impulse response to both common (Γih) and idiosyncratic

(Υih) shocks, for h = 0, 1, 2, . . ., can be computed as follows:

Γih = JΦh
i J

′∆i Υih = JΦh
i J

′Bi0 (8)

where ∆i is the 2× 2 matrix containing the loadings associated with the common factors,

Bi0 is the 2 × 2 impact multiplier matrix, and J = [I2 : 0 : · · · : 0] is a 2 × 4 selection

matrix. Moreover, we also compute the historical decomposition of the one month return

and realized volatility for each i-th constituent as follows:9

yit = JYit = J
t−1∑
j=0

Φj
iµi + JΦt

iYi0 + J
t−1∑
j=0

Φj
iΘi1Ȳt−j−1 + J

t−1∑
j=0

Φj
iΘi2Ȳt−j−2︸ ︷︷ ︸

Total expected component

+ (9)

+ J
t−1∑
j=0

Φj
i∆iÊt−j + J

t−1∑
j=0

Φj
iBi0Ξit−j︸ ︷︷ ︸

Total unexpected component

where the one month return (rit) and the realized volatility (RVit) contained in yit =

(r′it, RV ′
it)

′ can be decomposed into an anticipated (expected) and an unanticipated (unex-

pected) component. In particular, the total expected component to the dynamics of rit

and RVit is computed as the sum of the contribution of the constant terms (µi), the initial

condition (yi0), and the lagged cross-sectional averages (ȳit−1 and ȳit−2), while the contri-

bution of the total unexpected component is obtained by summing up the contribution of

the common (ε̂t) and idiosyncratic (ξit) shocks.

3 Data

In this paper, we use monthly returns and realized volatility of two European green and

brown portfolios of stocks over the period 2010m6− 2022m5. As for the green portfolio,

9See Appendix A, for further details on the construction of the MA representation.
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we select the Eurozone Low Carbon Select Index maintained by Refinitiv, which measures

the performance of the stocks of 50 European companies that actively support and invest

in environmental, social, and governance (ESG) values and principles in the operation of

their companies, particularly by aiming to lessen their carbon emissions.10 The index is

computed by aggregating the information of its 50 constituents using an equally-weighted

scheme.11 Due to data availability, as well as to avoid overlapping between green and

brown portfolios, we discard 10 constituents from the estimation sample.12 This enables

us to span over a relatively long time horizon and, at the same time, to cover the 80%

of the original portfolio sample size.13 The list of 40 green portfolio’s constituents used

in our study, together with their environment score provided by Refinitiv, is reported

in Table 1 (Panel A). As can be seen in Table 1 (Panel A), most of the constituents

(around 78% of the total portfolio) show an environment score greater than 75.14 As for

the brown portfolio, we construct an equally-weighted portfolio underlying the Oil&Gas

and Utilities industry sectors of the STOXX Europe 600, that is the iShares STOXX

Europe 600 Oil&Gas UCITS ETF and the iShares STOXX Europe 600 Utilities UCITS

ETF, both monitored by BlackRock. We select 41 companies (out of the 51 available)

whose observations start from June 2010.15 The list of the companies entering the brown

portfolio is reported in Table 1 (Panel B). As shown in Table 1 (Panel B), only 24 out of

41 constituents report an environment score greater than 75.

For both the green and brown portfolios, the monthly return and realized volatility series

10The ESG score provided by Refinitiv measures the performance of a company in terms of three pillars:
(i) environment, (ii) social and (iii) governance. Refinitiv assigns a score to each pillar that results from
the aggregation of ten different category scores. The environment pillar includes emissions, resource use
and innovation. The social pillar includes human rights, product responsibility, workforce and community.
Finally, the governance pillar includes management, shareholders and CSR strategy.

11Technical details on the construction and calculation methodology are reported in the Refinitiv
website.

12In detail, we remove the following companies, whose observations are available for less than 10 years
(the first date available is reported in brackets): ASR Nederland N.V. (10 June 2016), CNH Industrial
N.V. (30 September 2013), KION GROUP AG (8 July 2013), Signify N.V. (27 May 2016), NN Group
N.V. (2 July 2014), Vonovia SE (11 July 2013), Worldline SA (27 June 2014) and Zalando SE (1 October
2014). Moreover, we remove Electricité de France S.A. and Red Eléctrica Corporación, S.A. as they are
also included in the constructed brown portfolio.

13In the selected sample, we replace the missing observations with the value observed the day before.
14According to Refinitiv, companies with a score greater than 75 show excellent relative ESG performance

as well as a high level of transparency in publicly reporting material ESG data.
15We discard the following companies from the estimation sample (the first available observation is

reported in brackets): Corporación Acciona Enerǵıas Renovables, S.A. (2 July 2021), BKW AG (12
December 2011), Energean plc (16 March 2018), Siemens Energy AG (29 September 2020), Gaztransport
& Technigaz SA (27 February 2014), Harbour Energy plc (1 April 2021), Italgas S.p.A. (7 November 2016),
Ørsted A/S (9 June 2016). Furthermore, the two companies entering the green portfolio (Electricité de
France S.A. and Red Eléctrica Corporación, S.A.) are also discarded.
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Table 1: Constituents of the green and brown portfolios

Panel A: Green portfolio

Security name Ticker Country Env. score Security name Ticker Country Env. score

ALSTOM SA ALO France 99 KESKO KESKOB Finland 78
ALLIANZ SE ALV Germany 95 KONINKLIJKE KPN NV KPN Netherlands 76
AMADEUS IT HOLDING SA AMS Spain 73 MEDIOBANCA BANCA CRED. FIN. SPA MB Italy 47

BANCO BILBAO VIZCAYA ARGENTARIA S.A. BBVA Spain 95 MÜNCHENER RÜCK∗ MUV2 Germany 94
BAYERISCHE MOTOREN WERKE AG BMW Germany 81 NOKIA OYJ NOKIA Finland 70
BNP PARIBAS SA BNP France 95 ORANGE SA ORA France 86
CAIXABANK SA CABK Spain 85 KONINKLIJKE PHILIPS NV PHIA Netherlands 81
CAP GEMINI SA CAP France 77 KERING SA KER France 96
CARREFOUR SA CA France 91 PUMA SE PUM Germany 85
COMMERZBANK AG CBK Germany 93 RANDSTAD NV RAND Netherlands 63
DASSAULT SYSTEMES SA DSY France 77 BANCO SANTANDER SA SAN Spain 90
DEUTSCHE BOERSE AG DB1 Germany 66 SCHNEIDER ELECTRIC SA SU France 68
DEUTSCHE TELEKOM AG DTE Germany 85 SIEMENS AG SIE Germany 88
ELISA OYJ ELISA Finland 71 SOCIETE GENERALE GLE France 96
ASSICURAZIONI GENERALI SPA G Italy 96 STMICROELECTRONICS NV STM Netherlands 95
HENKEL AG & CO KGAA HEN3 Germany 70 SYMRISE AG SY1 Germany 64
ING GROEP NV INGA Netherlands 86 TELEFONICA SA TEF Spain 82
INTESA SANPAOLO SPA ISP Italy 97 UCB SA UCB Belgium 77
INDITEX S.A. ITX Spain 96 UNIBAIL RODAMCO WESTFIELD URW France 88
KBC GROUPE SA KBC Belgium 93 VIVENDI SA VIV France 81

Panel B : Brown portfolio

Security name Ticker Country Env. score Security name Ticker Country Env. score

A2A A2A Italy 84 NESTE NESTE Finland 74
AKER BP AKRBP Norway 60 NATIONAL GRID PLC NG. United Kingdom 62
BP PLC BP United Kingdom 91 NATURGY ENERGY SA NTGY Spain 89
CENTRICA PLC CNA United Kingdom 71 OMV AG OMV Austria 76
DRAX GROUP PLC DRX United Kingdom 63 POLSKI KONCERN NAFTOWY ORLEN SA PKN Poland 57
ENCAVIS AG ECV Germany 42 PENNON GROUP PLC PNN United Kingdom 89
EDP ENERGIAS DE PORTUGAL SA EDP Portugal 89 REPSOL SA REP Spain 89
EDP RENOVAVEIS SA EDPR Portugal 90 RWE AG RWE Germany 79
ENDESA SA ELE Spain 82 SHELL PLC SHELL United Kingdom 91
ELIA GROUP SA ELI Belgium 55 SNAM SRG Italy 96
ENEL ENEL Italy 96 SSE PLC SSE United Kingdom 92

ENAGÁS SA ENG Spain 84 SUBSEA SA SUBC Norway 86
ENGIE SA ENGI France 67 SEVERN TRENT PLC SVT United Kingdom 72
ENI ENI Italy 72 TENARIS SA TEN Italy 78
E.ON N EOAN Germany 58 TERNA RETE ELETTRICA NAZIONALE TRN Italy 75
EQUINOR EQNR Norway 75 TOTALENERGIES TTE France 91
FORTUM FORTUM Finland 85 UNITED UTILITIES GROUP PLC UU. United Kingdom 82
GALP ENERGIA SGPS SA GALP Portugal 75 VERBUND AG VER Austria 90
HERA HER Italy 99 VEOLIA ENVIRON. SA VIE France 79
IBERDROLA SA IBE Spain 96 VESTAS WIND SYSTEMS VWS Denmark 75
NEL NEL Norway 36

Notes. List of constituents entering the Refinitiv Eurozone Low Carbon Select Index (namely the green portfolio) (Panel A) and the brown portfolio constructed by aggregating the companies’ stocks from the
iShares STOXX Europe 600 Oil&Gas UCITS ETF and iShares STOXX Europe 600 Utilities UCITS ETF (Panel B). For each constituent, the table reports the following information: full security name, ticker,
the headquarter (at a country level) and the environment score (out of 100) provided by Refinitiv. ∗Abbreviation of Münchener Rückversicherungs-Gesellschaft Aktiengesellschaft in München.

of the N constituents are computed by using their close price series downloaded from the

Yahoo Finance database. We compute the return over a one-month horizon (rit) as the log

changes of the monthly close price: rit = log (Pit) − log (Pit−1), for t = 1, . . . , T , where

Pit is the close price of the i -th constituent observed at the end of month t. In line with

Cesa-Bianchi et al. (2020), the monthly realized volatility (RVit) is computed as the sum

of the squared daily return (rid):

RVit =

√√√√ D∑
d=1

(rid − r̄i)2 , for t = 1, . . . , T (10)

where D is the number of trading days in month t, rid = log (Pid)− log (Pid−1) is the daily

return computed for the i -th constituent, and Pid is the daily closing price. Descriptive

statistics for the monthly return and for the realized volatility of the 40 green portfolio’s
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Table 2: Descriptive statistics for the monthly return of the green portfolio.

Constituent Mean Median Max. Min. Std. Dev. Skewness Kurtosis

ALO -0.003 -0.002 0.398 -0.258 0.089 0.357 5.932
ALV 0.006 0.006 0.269 -0.239 0.069 -0.278 4.820
AMS 0.011 0.014 0.338 -0.385 0.072 -0.748 10.454
BBVA -0.003 0.001 0.468 -0.397 0.097 0.268 7.720
BMW 0.005 0.008 0.234 -0.242 0.083 -0.035 3.920
BNP 0.001 0.013 0.364 -0.465 0.098 -0.679 6.771
CA -0.004 0.005 0.148 -0.318 0.070 -0.676 4.809
CABK -0.000 0.003 0.318 -0.311 0.097 0.085 4.060
CAP 0.011 0.014 0.170 -0.254 0.076 -0.586 3.388
CBK -0.012 0.002 0.339 -0.454 0.120 -0.313 4.109
DB1 0.008 0.011 0.139 -0.220 0.060 -0.726 4.688
DSY 0.015 0.020 0.161 -0.209 0.059 -0.370 3.784
DTE 0.005 0.007 0.145 -0.222 0.059 -0.453 4.714
ELISA 0.009 0.014 0.154 -0.174 0.050 -0.237 3.644
G 0.001 -0.003 0.261 -0.270 0.078 -0.197 4.657
GLE -0.002 0.004 0.360 -0.511 0.119 -0.654 5.297
HEN3 0.004 0.004 0.161 -0.155 0.056 -0.187 3.394
INGA 0.003 0.012 0.333 -0.588 0.105 -1.122 9.287
ISP -0.000 0.010 0.305 -0.390 0.108 -0.736 4.477
ITX 0.006 0.007 0.273 -0.192 0.068 0.090 4.627
KBC 0.004 0.014 0.398 -0.671 0.113 -1.264 12.584
KER 0.012 0.002 0.210 -0.175 0.072 0.101 2.899
KESKOB 0.009 0.014 0.215 -0.187 0.074 -0.092 3.279
KPN -0.004 0.000 0.215 -0.461 0.078 -1.416 10.565
MB 0.003 0.009 0.283 -0.488 0.110 -0.764 5.420
MUV2 0.005 0.011 0.151 -0.226 0.059 -0.673 4.062
NOKIA -0.004 -0.001 0.507 -0.408 0.116 -0.092 6.008
ORA -0.002 -0.004 0.189 -0.158 0.060 0.429 3.613
PHIA 0.000 0.003 0.156 -0.267 0.069 -0.395 3.806
PUM 0.008 0.003 0.249 -0.241 0.075 -0.029 4.105
RAND 0.003 0.004 0.192 -0.373 0.085 -0.938 5.788
SAN -0.007 0.000 0.388 -0.405 0.094 -0.222 6.308
SIE 0.004 0.005 0.151 -0.218 0.063 -0.419 3.713
STM 0.012 0.020 0.227 -0.358 0.100 -0.445 3.491
SU 0.008 0.017 0.155 -0.144 0.063 -0.358 2.575
SY1 0.013 0.021 0.148 -0.207 0.056 -0.739 4.095
TEF -0.008 -0.007 0.265 -0.250 0.075 -0.106 4.002
UCB 0.008 0.003 0.196 -0.277 0.068 -0.412 4.509
URW -0.005 -0.002 0.533 -0.749 0.101 -1.801 27.238
VIV -0.003 0.006 0.145 -1.086 0.107 -7.308 74.780

Notes. Descriptive statistics computed for the monthly return (in decimals) of the selected
40 constituents entering the Refinitiv Eurozone Low Carbon Select Index, over the period
spanning from June 2010 to May 2022. The first column shows the ticker of each constituent
(see Table 1, panel A).
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Table 3: Descriptive statistics for the monthly realized volatility of the green portfolio.

Constituent Mean Median Max. Min. Std. Dev. Skewness Kurtosis

ALO 0.079 0.068 0.237 0.021 0.041 1.463 5.292
ALV 0.061 0.057 0.300 0.020 0.036 3.169 18.431
AMS 0.070 0.061 0.305 0.024 0.037 2.684 14.606
BBVA 0.089 0.079 0.308 0.035 0.041 1.996 8.842
BMW 0.073 0.068 0.286 0.025 0.033 2.495 14.253
BNP 0.088 0.074 0.357 0.032 0.050 2.553 11.641
CA 0.074 0.065 0.234 0.032 0.031 1.702 7.342
CABK 0.088 0.082 0.286 0.036 0.035 2.146 10.825
CAP 0.075 0.066 0.269 0.024 0.034 2.102 10.360
CBK 0.111 0.097 0.357 0.043 0.051 1.755 6.770
DB1 0.062 0.057 0.248 0.018 0.029 3.103 17.146
DSY 0.061 0.054 0.262 0.022 0.029 2.627 16.638
DTE 0.057 0.051 0.196 0.019 0.025 1.722 8.263
ELISA 0.056 0.051 0.212 0.020 0.025 2.319 12.984
G 0.068 0.060 0.225 0.022 0.033 1.962 8.815
GLE 0.103 0.088 0.412 0.033 0.059 2.277 9.724
HEN3 0.057 0.051 0.157 0.022 0.022 1.751 7.437
INGA 0.091 0.079 0.378 0.023 0.051 2.354 10.856
ISP 0.097 0.085 0.308 0.022 0.051 1.658 6.398
ITX 0.068 0.064 0.209 0.028 0.026 1.856 9.104
KBC 0.096 0.081 0.350 0.026 0.056 1.833 6.823
KER 0.074 0.068 0.264 0.023 0.031 1.979 11.245
KESKOB 0.068 0.061 0.274 0.024 0.032 2.228 13.056
KPN 0.070 0.060 0.237 0.022 0.035 1.926 7.812
MB 0.091 0.084 0.346 0.029 0.045 2.275 12.122
MUV2 0.058 0.050 0.320 0.020 0.034 3.894 27.570
NOKIA 0.100 0.085 0.292 0.036 0.051 1.649 5.512
ORA 0.061 0.054 0.197 0.020 0.026 1.316 6.770
PHIA 0.068 0.061 0.187 0.024 0.027 1.643 7.116
PUM 0.075 0.069 0.309 0.028 0.034 2.862 17.809
RAND 0.079 0.071 0.236 0.025 0.034 1.898 8.091
SAN 0.089 0.076 0.304 0.038 0.041 2.005 9.134
SIE 0.063 0.057 0.256 0.019 0.028 3.047 19.356
STM 0.103 0.095 0.329 0.042 0.039 1.793 9.963
SU 0.075 0.067 0.251 0.024 0.033 2.023 9.461
SY1 0.060 0.056 0.199 0.020 0.023 2.143 11.867
TEF 0.067 0.057 0.286 0.027 0.036 2.514 13.184
UCB 0.065 0.058 0.228 0.022 0.030 2.501 12.051
URW 0.079 0.060 0.426 0.021 0.060 2.997 13.907
VIV 0.068 0.056 0.912 0.021 0.076 9.772 108.464

Notes. Descriptive statistics computed for the monthly realized volatility (in decimals) of
the selected 40 constituents entering the Refinitiv Eurozone Low Carbon Select Index, over
the period spanning from June 2010 to May 2022. The first column shows the ticker of each
constituent (see Table 1, panel A).
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Table 4: Descriptive statistics for the monthly return of the brown portfolio.

Constituent Mean Median Max. Min. Std. Dev. Skewness Kurtosis

A2A 0.002 0.011 0.254 -0.329 0.086 -0.708 4.828
AKRBP 0.020 0.026 0.566 -0.514 0.134 0.260 6.401
BP -0.001 -0.001 0.241 -0.439 0.079 -0.692 9.412
CNA -0.009 -0.004 0.235 -0.639 0.086 -2.651 21.949
DRX 0.005 0.008 0.306 -0.563 0.105 -1.060 8.411
ECV 0.017 0.008 0.213 -0.247 0.072 0.134 4.171
EDP 0.004 -0.003 0.163 -0.251 0.061 -0.294 4.572
EDPR 0.011 0.010 0.250 -0.220 0.071 0.095 4.070
ELE 0.001 0.008 0.135 -0.700 0.083 -4.286 36.920
ELI 0.012 0.011 0.164 -0.103 0.045 0.260 3.593
ENEL 0.003 0.002 0.203 -0.191 0.068 -0.257 3.353
ENG 0.003 0.007 0.163 -0.257 0.058 -0.640 5.342
ENGI -0.005 -0.001 0.175 -0.468 0.075 -1.503 11.896
ENI -0.000 0.003 0.323 -0.191 0.067 0.686 6.216
EOAN -0.006 0.001 0.223 -0.275 0.073 -0.662 4.930
EQNR 0.007 0.005 0.187 -0.168 0.062 0.040 3.345
FORTUM -0.000 0.007 0.173 -0.366 0.073 -1.202 6.881
GALP 0.000 0.006 0.263 -0.211 0.076 -0.052 3.667
HER 0.006 0.006 0.163 -0.175 0.065 -0.417 3.509
IBE 0.005 0.002 0.190 -0.232 0.067 -0.428 4.282
NEL -0.009 -0.002 0.903 -0.749 0.226 0.367 5.709
NESTE 0.016 0.005 0.296 -0.185 0.094 0.308 3.194
NG 0.005 0.006 0.089 -0.154 0.045 -0.732 3.895
NTGY 0.006 0.005 0.192 -0.266 0.069 -0.362 4.418
OMV 0.005 0.008 0.366 -0.408 0.092 -0.389 6.248
PKN 0.005 0.002 0.373 -0.255 0.091 0.219 4.124
PNN 0.002 0.007 0.117 -0.287 0.058 -1.072 6.619
REP -0.001 0.006 0.411 -0.264 0.088 0.282 6.367
RWE -0.002 -0.006 0.221 -0.347 0.098 -0.597 4.335
SHEL 0.002 0.005 0.275 -0.183 0.064 0.495 5.409
SRG 0.003 0.010 0.115 -0.282 0.051 -1.556 9.577
SSE 0.004 0.001 0.122 -0.158 0.049 -0.098 2.944
SUBC 0.000 0.003 0.316 -0.511 0.106 -0.597 6.218
SVT 0.006 0.013 0.119 -0.210 0.050 -0.753 5.050
TEN 0.000 0.008 0.466 -0.381 0.102 0.198 6.514
TRN 0.007 0.008 0.110 -0.224 0.048 -0.800 5.680
TTE 0.003 0.006 0.327 -0.140 0.063 0.835 6.863
UU 0.005 0.010 0.121 -0.171 0.051 -0.379 3.324
VER 0.009 0.012 0.225 -0.261 0.085 -0.192 3.433
VIE 0.002 0.003 0.303 -0.311 0.083 -0.331 5.440
VWS 0.008 0.009 0.548 -0.342 0.127 0.391 5.044

Notes. Descriptive statistics computed for the monthly return (in decimals) of the selected 41
constituents entering the brown portfolio, that is the equally-weighted portfolio constructed
by combining the iShares STOXX Europe 600 Oil&Gas UCITS ETF and iShares STOXX
Europe 600 Utilities UCITS ETF, over the period spanning from June 2010 to May 2022.
The first column shows the ticker of each constituent (see Table 1, panel B).
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Table 5: Descriptive statistics for the monthly realized volatility of the brown portfolio.

Constituent Mean Median Max. Min. Std. Dev. Skewness Kurtosis

A2A 0.076 0.071 0.280 0.029 0.035 2.273 11.433
AKRBP 0.109 0.092 0.450 0.038 0.061 2.972 15.135
BP 0.070 0.060 0.390 0.018 0.042 3.729 26.016
CNA 0.072 0.061 0.330 0.019 0.044 2.740 12.946
DRX 0.087 0.078 0.360 0.026 0.046 2.691 13.604
ECV 0.080 0.065 0.334 0.019 0.048 2.307 11.076
EDP 0.064 0.061 0.262 0.017 0.028 2.798 19.045
EDPR 0.071 0.066 0.228 0.017 0.032 1.153 6.238
ELE 0.064 0.058 0.642 0.019 0.055 8.288 85.288
ELI 0.048 0.041 0.306 0.013 0.029 5.061 43.283
ENEL 0.069 0.064 0.284 0.022 0.030 2.961 20.079
ENG 0.058 0.055 0.239 0.025 0.025 2.987 20.143
ENGI 0.066 0.060 0.244 0.027 0.028 2.379 12.994
ENI 0.067 0.058 0.379 0.022 0.038 4.335 33.978
EOAN 0.069 0.062 0.194 0.028 0.033 1.887 6.929
EQNR 0.070 0.066 0.309 0.019 0.033 3.023 21.094
FORTUM 0.066 0.057 0.228 0.026 0.030 2.112 9.409
GALP 0.076 0.068 0.276 0.026 0.036 1.866 9.423
HER 0.063 0.057 0.288 0.024 0.028 4.136 30.512
IBE 0.059 0.052 0.237 0.017 0.031 2.318 11.117
NEL 0.204 0.177 0.614 0.058 0.114 1.606 5.508
NESTE 0.088 0.081 0.306 0.031 0.038 1.947 10.021
NG 0.049 0.045 0.218 0.022 0.022 3.596 26.638
NTGY 0.063 0.054 0.271 0.023 0.032 2.595 14.452
OMV 0.079 0.073 0.451 0.030 0.041 5.563 48.889
PKN 0.088 0.083 0.211 0.037 0.027 2.014 9.345
PNN 0.057 0.050 0.367 0.024 0.033 5.992 53.167
REP 0.080 0.069 0.328 0.033 0.043 2.278 11.040
RWE 0.082 0.073 0.254 0.031 0.038 1.819 6.934
SHEL 0.064 0.056 0.388 0.016 0.040 4.190 30.841
SRG 0.057 0.052 0.305 0.024 0.030 4.622 35.659
SSE 0.056 0.049 0.299 0.023 0.030 4.215 32.655
SUBC 0.099 0.091 0.441 0.033 0.046 3.207 22.927
SVT 0.053 0.048 0.198 0.026 0.021 2.948 17.971
TEN 0.089 0.082 0.316 0.038 0.037 2.281 12.358
TRN 0.055 0.050 0.249 0.021 0.025 3.781 26.685
TTE 0.064 0.057 0.366 0.023 0.036 4.562 36.518
UU 0.054 0.052 0.228 0.028 0.022 3.699 28.358
VER 0.078 0.068 0.331 0.037 0.036 3.263 20.156
VIE 0.074 0.065 0.291 0.022 0.039 2.373 11.787
VWS 0.118 0.110 0.322 0.036 0.056 1.332 4.927

Notes. Descriptive statistics computed for the monthly realized volatility (in decimals) of the
selected 41 constituents entering the brown portfolio, that is the equally-weighted portfolio
constructed by combining the iShares STOXX Europe 600 Oil&Gas UCITS ETF and iShares
STOXX Europe 600 Utilities UCITS ETF, over the period spanning from June 2010 to May
2022. The first column shows the ticker of each constituent (see Table 1, panel B).
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constituents are reported in Table 2 and Table 3, respectively, while the corresponding

descriptive statistics for the 41 brown portfolio’s constituents are reported in Tables 4-5.

In line with Pástor et al. (2022), we focus on the return-based portfolio performance. The

mean of the one month return on the green and brown portfolios considered is equal to

0.29% and 0.36%, respectively. The comparison between the one month returns sample

mean shows a negative risk premium driving the unconditional expectation return on the

green-minus-brown portfolio, suggesting a climate risk hedging role played by green stocks.

The standard deviation of the one month return on the green and brown portfolios are

equal, respectively to 5.07% and to 4.12%, respectively. The large values of the skewness

and kurtosis reported by both the monthly return and realized volatility of the green (see

Tables 2-3) and brown (see Tables 4-5) portfolios’ constituents support the assumption of

non-gaussianity we use to identify the structural shocks.

Figure 1 shows the cumulative return of green (solid line) and brown (dashed line)

portfolios computed, for each portfolio, as the cumulative sum of the cross-sectional

average of the constituents’ one month return, over the period 2010m6− 2022m5. In line

with the empirical findings of Pástor et al. (2022) we observe, for European stocks, an

out-performance of the green portfolio by 10.4%, on average, relative to the brown portfolio.

However, the green portfolio out-performance is milder than the one observed by Pástor

et al. (2022) for the US over the 2012− 2020 sample period. More specifically, Figure 1

shows an out-performance of the green portfolio especially over the period 2013− 2019.

The green-minus-brown (GMB) cumulative return becomes negligible during the first

months of the Covid-19 pandemic, and, after a rebound during 2021, the GMB cumulative

return becomes negative over the last months of the sample (i.e., from February 2022).

4 Empirical evidence

Panel SVAR estimation. In the first stage of the analysis, we estimate the SVAR

described in equation (2) to retrieve the common shocks, that is the structural shocks

hitting the cross-sectional averages of return and realized volatility of the green and

brown portfolios. Both the reduced- and structural-form parameters of the aggregate

SVAR are estimated through ML by assuming that the error terms are non-gaussian,

using the three-step approach discussed in Section 2.1 (see Lanne et al., 2017). Both for

the green and brown portfolios, the Aikake information criterion (AIC) suggests a lag

order of 2. A multivariate Portmanteau test for residual autocorrelation supports the
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Figure 1: Cumulative return of the green and brown portfolios.
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Notes. Cumulative return (in percent) of the green (green solid line) and brown (brown dashed line)
portfolios observed over the period 2010m6 − 2022m5. For both the green and brown portfolios, the
portfolio’s return is computed as the cross-sectional average of the portfolio constituents’ return.

choice of a lag length equal to 2.16 Given the assumption of non-gaussianity, we run a

Multivariate Jarque-Bera test on the reduced form residuals obtained from the estimation

of the aggregate VAR. The test strongly rejects the null hypothesis of normality for both

the green and brown portfolios.

Thus, we estimate a structural VAR using a lag length equal to two (p = 2) for both

the green and brown portfolios. The ML estimates of the standardized structural impact

multiplier B̃0 (i.e., the one with its main diagonal entries normalized to unity), the standard

deviation of the structural shocks σi and the degree of freedom λi, for i = 1, 2, are shown

in Table 6. In panel A of Table 6, we report the results for the green portfolio, while

those related to the brown portfolio are reported in panel B of Table 6. The relatively

large estimates of the parameter λi (both for the green and brown portfolios) suggest

evidence of deviation from the normality assumption. In Table 6 (panels A and B), we

also report the ML estimates of the non-standardized structural impact multiplier matrix

B0 = B̃0Ω
1/2, where Ω1/2 = diag(σ1, σ2) is the diagonal matrix containing the standard

16We run the multivariate Portmanteau test using twelve lags.
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Table 6: ML estimation of the aggregate non-gaussian SVAR.

Panel A:
Green

ε1 ε2 ε1 ε2

B̃0 r̄t 1.000 −1.443 B0 r̄t 0.038 −0.029
(-) (0.171)

R̄V t 0.032 1.000 R̄V t 0.001 0.020
(0.050) (-)

σi 0.038 0.020
(0.004) (0.003)

λi 6.782 3.500
(3.000) (0.985)

Panel B :
Brown

B̃0 r̄t 1.000 −1.069 B0 r̄t 0.032 −0.019
(-) (0.128)

R̄V t 0.033 1.000 R̄V t 0.001 0.018
(0.049) (-)

σi 0.032 0.018
(0.003) (0.003)

λi 7.010 3.336
(3.182) (0.905)

Notes. Maximum likelihood (ML) estimation of the aggregate SVAR (see equation
2) under the non-Gaussianity assumption of the error terms. The table shows the
estimates of the standardized impact multiplier B̃0 (i.e., with its main diagonal entries
normalized to unity), the standard deviation of the structural shocks σi, and the
degree of freedom λi, for i = 1, 2 (left panel). The corresponding standard errors are
reported in brackets. The table also shows the non-standardised impact multiplier
matrix B0 = B̃0Ω

1/2 (right panel), where Ω1/2 = diag(σ1, σ2) is the diagonal matrix
containing the standard deviation of the structural shocks (εt). Results in decimals.
Estimation sample: 2010m6− 2022m5.

deviation of the structural shocks (εt). As discussed by the study of Lanne et al. (2017),

the evidence of non-gaussianity for the financial time series considered allows us to rely
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only on a statistical exact identifying scheme. We now comment on the point estimate

of the coefficients entering the columns of B0 (see Table 6, right panel) which are then

used to retrieve the common shocks, used in a second stage of the analysis, to control for

cross-sectional dependence. The magnitude of the estimates is similar for both the green

and brown portfolios. In particular, the first structural shock yields positive responses of

r̄t and R̄V t: it is equal to 3.8% and 0.1%, (respectively) for the green portfolio, and it is

equal to 3.2% and 0.1% (respectively) for the brown portfolio. The response to the second

structural shock drives the endogenous variables in opposite directions: the impact on r̄t

and R̄V t is equal to −2.9% and to 2% for the green portfolio, and it is equal to −1.9%

and to 1.8% for the brown portfolio.

In the second stage of the analysis, the common shocks (εt) estimated from the aggregate

SVAR enter the Panel Factor-Augmented VAR as exogenous variables (see equation 1)

together with the lagged values of the cross-sectional averages of the endogenous variables.

The Panel Factor-Augmented VAR is estimated through ML by assuming that the error

terms are not Gaussian, for each of the two portfolios, separately. We use the same lag

structure for the two portfolios, that is the lag length is set equal to two for both the

endogenous variables (yit−ℓ) (i.e., p = 2) and the lagged cross-sectional averages (ȳt−ℓ) (i.e.,

q = 2). The predictive performance of the Panel VAR for the return and realized volatility

series is assessed, first, by inspecting Figure 2 showing the distribution of the R2 obtained

by estimating the VARX for each of the 40 constituents entering the green portfolio (Figure

2, panel A) and for each of the 41 constituents entering the brown portfolio (Figure 2,

panel B). In the left column of Figure 2, we report the R2 associated with the equation of

the one month return, while the right column shows those associated with the equation of

the realized volatility. Inspection of Figure 2 reveals that the average R2 computed from

the estimation of the one month return equation and of the realized volatility equation are

equal, respectively, to 0.44 and 0.69, for the green portfolio (i.e., average across the green

portfolio’s constituents), while the corresponding R2 computed for the brown portfolio

(i.e., average across the brown portfolio’s constituents) are equal to 0.36 (for one month

return) and 0.67 (for realized volatility).

Moreover, in line with Cesa-Bianchi and Ferrero (2021), we measure the cross-sectional

dependence among shocks by computing the average pairwise cross-section correlations

associated with the VARX residuals (uit).
17 As reported in Table 7, the average pairwise

cross-section correlation of one month return (rit) and realized volatility (RVit) in the

17As discussed in Cesa-Bianchi et al. (2020) and Cesa-Bianchi and Ferrero (2021), evidence of weak
cross-sectional dependence of the VARX residuals is crucial for the identification of the common factors
(i.e., the structural shocks).
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Figure 2: R2 from the Panel Factor-Augmented VAR.
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Notes. Distribution of the R2 computed from the constituent-by-constituent estimation of the Panel
Factor-Augmented VAR described in equation (1). Panel A shows the distribution of the R2 related to
the VARX fitted to the one month return and realized volatility of the 40 constituents entering the green
portfolio, while panel B shows the distribution of the R2 related to the VARX fitted to the one month
return and realized volatility of the 41 constituents entering the brown portfolio. Estimation sample:
2010m6− 2022m5.
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raw data is equal to, respectively, 0.35 and 0.57 for the green portfolio and equal to,

respectively, 0.27 and 0.53, for the brown portfolio. The average pairwise cross-section

correlation of the associated reduced-form residuals becomes almost zero when controlling

for the common factors, for both the green and brown portfolios.18

4.1 Impulse Response analysis

Impulse response analysis shows that we can rely only on statistical identification when

the focus is on the response to common shocks. More specifically, Figure 3 shows the

distribution of the response, at horizon zero, of one month return and realized volatility of

each constituent entering the green and brown portfolios (panel A and B, respectively),

where the impact response of the top five green constituents, in terms of climate hedging

(see Section 4.2), is highlighted by green colour. An inspection of Figure 3 confirms the

results discussed for the aggregate SVAR: while there is clear evidence of the opposite

response of one month return and realized volatility to the second structural shock (negative

for the former and positive for the latter), the response of realized volatility to the first

structural common shock displays large dispersion around the mean. The evidence of high

uncertainty in the identification of the first structural shock is confirmed when reporting

the large error bands (we plot those associated with 68% and 90% confidence intervals in

Figure 4) around the mean-group impulse response of the endogenous variables to the first

common shock, computed over the 12-month forecast horizon for both green and brown

portfolios. The analysis of the responses to idiosyncratic shocks allows relying not only on

statistical identification but to give, ex-post, an economic interpretation of the structural

shocks. Panel A of Figure 5 shows the impact responses for the 40 green portfolio’s

constituents, while panel B displays those for the 41 constituents entering the brown

portfolio. As shown in Figure 5, with the only exception of a few constituents (that is for

three constituents entering the green portfolio), in all the remaining constituent-specific

VARX we can interpret ex post the shocks as risk aversion (the one underlying a positive

co-movement of return and volatility motivated by a return compensation for higher risk)

and financial leverage (the one underlying a negative co-movement of return and volatility

motivated by negative shocks to return leading a total equity decrease, hence a rise in

18As for the green portfolio, the mean of the average pairwise cross-section correlations is equal to −0.02
for the residuals associated with the equation for rit and to −0.01 for the residuals associated with the
equation for RVit (see Table 7, left panel). As for the brown portfolio, the mean of the average pairwise
cross-section correlations is equal to −0.01 for the residuals associated with the equation for rit and equal
to 0.01 for the residuals associated with the equation for RVit (see Table 7, right panel).

20



Table 7: Average pairwise cross-section correlations for the green and brown portfolios

Green portfolio Brown portfolio

Constituent rt RVt u
(r)
t u

(RV )
t Constituent rt RVt u

(r)
t u

(RV )
t

ALO 0.320 0.563 -0.032 -0.020 A2A 0.305 0.467 -0.012 0.000
ALV 0.497 0.688 -0.003 0.018 AKRBP 0.216 0.555 -0.061 -0.036
AMS 0.358 0.574 -0.012 -0.001 BP 0.321 0.633 -0.002 0.061
BBVA 0.455 0.657 -0.024 -0.002 CNA 0.270 0.470 -0.008 -0.016
BMW 0.398 0.668 -0.015 0.006 DRX 0.230 0.416 -0.028 -0.034
BNP 0.510 0.666 -0.016 0.013 ECV 0.117 0.426 -0.031 -0.044
CA 0.326 0.538 -0.029 -0.037 EDP 0.316 0.584 0.000 0.022
CABK 0.393 0.554 -0.024 -0.025 EDPR 0.229 0.474 -0.028 0.004
CAP 0.441 0.663 -0.021 -0.017 ELE 0.257 0.288 -0.012 -0.070
CBK 0.355 0.600 -0.039 -0.016 ELI 0.158 0.590 0.011 0.061
DB1 0.363 0.648 -0.007 0.000 ENEL 0.361 0.603 0.016 0.009
DSY 0.218 0.553 -0.017 -0.031 ENG 0.341 0.562 0.021 0.014
DTE 0.362 0.555 -0.013 0.001 ENGI 0.357 0.617 -0.003 -0.017
ELISA 0.104 0.475 -0.020 -0.034 ENI 0.369 0.678 -0.005 0.038
G 0.468 0.566 -0.012 0.000 EOAN 0.248 0.485 -0.009 -0.006
GLE 0.483 0.683 -0.023 0.008 EQNR 0.273 0.616 -0.020 -0.006
HEN3 0.298 0.497 -0.012 0.004 FORTUM 0.303 0.561 -0.029 -0.005
INGA 0.487 0.701 -0.022 0.011 GALP 0.310 0.610 -0.021 0.010
ISP 0.465 0.598 -0.022 -0.011 HER 0.311 0.608 0.014 0.046
ITX 0.344 0.576 -0.020 -0.001 IBE 0.326 0.524 0.007 0.004
KBC 0.380 0.628 -0.036 -0.004 NEL 0.057 0.076 -0.103 -0.152
KER 0.300 0.564 -0.018 -0.029 NESTE 0.229 0.522 -0.038 -0.041
KESKOB 0.191 0.554 -0.032 -0.010 NG 0.151 0.552 0.035 0.036
KPN 0.089 0.358 -0.025 -0.046 NTGY 0.350 0.587 0.013 -0.004
MB 0.439 0.570 -0.026 -0.015 OMV 0.336 0.639 -0.026 0.073
MUV2 0.438 0.676 -0.002 0.013 PKN 0.218 0.479 -0.042 0.033
NOKIA 0.224 0.343 -0.048 -0.059 PNN 0.147 0.313 0.001 -0.011
ORA 0.237 0.513 -0.023 -0.007 REP 0.337 0.604 -0.014 0.026
PHIA 0.329 0.532 -0.020 -0.011 RWE 0.300 0.481 -0.009 -0.011
PUM 0.200 0.472 -0.029 -0.014 SHEL 0.293 0.638 -0.009 0.057
RAND 0.461 0.651 -0.017 -0.010 SRG 0.324 0.597 0.026 0.045
SAN 0.452 0.645 -0.029 -0.003 SSE 0.276 0.589 0.004 0.042
SIE 0.432 0.631 -0.009 -0.007 SUBC 0.273 0.601 -0.046 0.010
STM 0.326 0.567 -0.034 -0.028 SVT 0.170 0.476 0.010 0.026
SU 0.412 0.672 -0.017 -0.003 TEN 0.273 0.609 -0.031 0.006
SY1 0.211 0.562 -0.023 -0.001 TRN 0.303 0.642 0.037 0.045
TEF 0.406 0.624 -0.024 0.010 TTE 0.323 0.665 -0.011 0.053
UCB 0.124 0.452 -0.021 -0.032 UU 0.190 0.516 0.017 0.033
URW 0.385 0.505 -0.023 0.003 VER 0.271 0.559 -0.023 0.017
VIV 0.190 0.181 -0.042 -0.096 VIE 0.301 0.548 0.002 -0.006

VWS 0.161 0.256 -0.057 -0.073

Notes. The table shows the average pairwise cross-section correlations of the endogenous variables, that is
of one-month return (rt) and realized volatility (RVt), and of the reduced-form residuals obtained from the
estimation of the Panel Factor-Augmented VAR (see equation 1), for both the green (left panel) and brown
(right panel) portfolios. Estimation sample: 2010m6− 2022m5.
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Figure 3: Impact response of one month return and realized volatility to common shocks
for the green and brown portfolio’s constituents.
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(b) Brown portfolio

Notes. Impulse response functions (in percent) of one month return (rt) and realized volatility (RVt) to
common shocks at horizon zero, computed for the green portfolio’s constituents (panel A) and for the
brown portfolio’s constituents (panel B). The size of the shocks is one standard deviation. The point
estimates of the impact response are reported on the horizontal axis. The impact response computed for
the top 5 green constituents is coloured in green. Estimation sample: 2010m6− 2022m5.
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Figure 4: Impulse response profile of one month return and realized volatility to common
shocks for the green and brown portfolio’s constituents.
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Notes. Impulse response functions (in percent) of one month return (rt) and realized volatility (RVt) to
common shocks, computed for the green portfolio’s constituents (panel A) and for the brown portfolio’s
constituents (panel B) over a 12-month forecast horizon. The size of the shocks is one standard deviation.
Each chart displays the arithmetic average of the constituent-specific impulse responses (black solid line)
and the corresponding 68% (1σ) and 90% (1.65σ) confidence bands (grey shaded areas). Estimation
sample: 2010m6− 2022m5.
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Figure 5: Impact response of one month return and realized volatility to idiosyncratic
shocks for the green and brown portfolio’s constituents.
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Notes. Impulse response functions (in percent) of one month return (rt) and realized volatility (RVt)
to idiosyncratic shocks (i.e., risk aversion and financial leverage idiosyncratic shocks) at horizon zero,
computed for the green portfolio’s constituents (panel A) and for the brown portfolio’s constituents (panel
B). The size of the shocks is one standard deviation. The point estimates of the impact response are
reported on the horizontal axis. The impact response computed for the top 5 green constituents is coloured
in green. Estimation sample: 2010m6− 2022m5.
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financial leverage and risk).19 Similarly to the charts reporting the responses to common

shocks, in Figure 5 we also highlight the responses to idiosyncratic shock reported by

the top five green constituents (see Section 4.2). Figure 6 shows the average estimates

of impulse responses across constituents (mean-group estimator) together with the 68%

and 90% confidence intervals, computed for the green (panel A) and brown (panel B)

portfolios. The average responses are qualitatively and quantitatively similar for both

portfolios, however, the uncertainty around the mean-group estimates tends to be larger

for the brown portfolio’s constituents (see also Figure 5).

4.2 Historical decomposition

Figure 7 shows the historical decomposition of the cumulative return computed for the

green-minus-brown (GMB) portfolio. The time series data for the cumulative return of

the GMB portfolio are displayed through a black solid line and it is computed as the

cumulative sum of the difference between the cross-sectional average of one month return

computed across the 40 green portfolio’s constituents and the one computed across the 41

constituents entering the brown portfolio. The GMB cumulative return is decomposed

into the expected (blue solid line) and unexpected (red solid line) components and they

are obtained by computing the cumulative sum of the expected and unexpected one month

return obtained from the historical decomposition described in equation (9). The time-

varying anticipated components of the green and brown portfolios are computed by taking

the average of the historical decomposition of the green portfolio constituents as well as the

one for the constituents of the brown portfolio. There is evidence of the out-performance

of the brown portfolio with respect to the green portfolio in terms of cumulative expected

return over the whole sample period (the mean value of the green-minus-brown difference

between the expected cumulative return component is equal to −7%). These findings

are in line with Pástor et al. (2022): stock markets acknowledge the climate risk hedging

properties of the green portfolio, hence the expected return on the GMB portfolio (which

investors hold to hedge climate risk) is negative. The unanticipated component of the

GMB portfolio’s cumulative return, computed as the difference between the unantici-

pated component of the green portfolio and the one of the brown portfolio, is reported

in Figure 7 and it shows findings similar to those observed for US stocks by Pástor et

al. (2022): there is evidence of an out-performance of the green portfolio over the brown one.

19The idiosyncratic structural shocks are not identified for the following green portfolio’s constituents
(the ticker is reported in brackets): Allianz SE (ALV), BNP Paribas SA (BNP), and KBC Group SA
(KBC).
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Figure 6: Impulse response profile of one month return and realized volatility to idiosyn-
cratic shocks for the green and brown portfolio’s constituents.
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Notes. Impulse response functions (in percent) of one month return (rt) and realized volatility (RVt) to
idiosyncratic shocks (i.e., risk aversion and financial leverage idiosyncratic shocks), computed for the green
portfolio’s constituents (panel A) and for the brown portfolio’s constituents (panel B) over a 12-month
forecast horizon. The size of the shocks is one standard deviation. Each chart displays the arithmetic
average of the constituent-specific impulse responses (black solid line) and the corresponding 68% (1σ)
and 90% (1.65σ) confidence bands (grey shaded areas). Estimation sample: 2010m6− 2022m5.
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Figure 7: Historical decomposition of the green-minus-brown (GMB) portfolio’s cumula-
tive returns.
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Notes. Contribution of the expected and unexpected components to the green-minus-brown (GMB)
portfolio’s cumulative return in percent. The GMB portfolio’s cumulative return (black line) is computed
as the difference between the cumulative sum of the one-month return of the green portfolio and the
one of the brown portfolio. The contributions of each component (expected and unexpected) to the
cumulative return are obtained through the cumulative sum of the contributions computed for the one
month return. The contribution of the expected component (blue line) is constructed as the difference
between the expected component computed for the green portfolio’s return and the one computed for the
brown portfolio’s return. For both the green and brown portfolios, the expected return is computed by
averaging out the expected components obtained from the historical decomposition of the return across
the portfolio constituents, over the observed sample. In each month, the expected component is computed
as the sum of the contributions of the constant term, initial condition and lagged cross-sectional averages
of return and realized volatilities. The contribution of the unexpected component (red line) is constructed
as the difference between the unexpected component computed for the green portfolio’s return and the
one computed for the brown portfolio’s return. For both the green and brown portfolios, the unexpected
component is computed by averaging out the total unexpected components obtained from the historical
decomposition of the return across the portfolio constituents, over the observed sample. In each month,
the total unexpected component is computed as the sum of the contributions of the common shocks and
the idiosyncratic shocks. Estimation sample: 2010m6− 2022m5.

Moreover, we extend the analysis of Pástor et al. (2022) by focusing (through historical

decomposition) on the contribution of the top 5 constituents to the green portfolio

performance. These are the constituents regarded by the financial markets as the best

hedge for climate risk (i.e., their expected return exhibits the largest negative difference

relative to the expected return for the brown portfolio) (see Table 8). Figure 8 (panels
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Table 8: Average expected return of the green constituents in percent deviation from the
brown average constituent.

Rank Constituent Deviation Env. score Rank Constituent Deviation Env. score

1 CBK -2.132 93 21 INGA -0.050 86
2 SAN -1.509 90 22 BNP -0.046 95
3 KPN -1.252 76 23 SIE -0.037 88
4 ORA -1.187 86 24 PUM 0.083 85
5 BBVA -1.155 95 25 BMW 0.101 81
6 TEF -0.988 82 26 KESKOB 0.102 78
7 CA -0.967 91 27 RAND 0.132 63
8 CABK -0.778 85 28 VIV 0.207 81
9 ALO -0.554 99 29 ALV 0.229 95
10 DTE -0.545 85 30 SU 0.268 68
11 G -0.543 96 31 ITX 0.353 96
12 KBC -0.443 93 32 DB1 0.493 66
13 NOKIA -0.422 70 33 UCB 0.515 77
14 GLE -0.417 96 34 MUV2 0.519 94
15 ISP -0.355 97 35 KER 0.762 96
16 URW -0.347 88 36 STM 1.030 95
17 HEN3 -0.147 70 37 DSY 1.090 77
18 PHIA -0.125 81 38 SY1 1.206 64
19 ELISA -0.095 71 39 CAP 1.277 77
20 MB -0.066 47 40 AMS 1.441 73

Notes. Expected component of each of the 40 constituents entering the Refinitiv Eurozone Low Carbon
Select Index (i.e., green portfolio) computed as the deviation from the expected component of the brown
average constituent (i.e., obtained by computing the mean across the brown portfolio’s constituents) and
averaged across the full sample 2010m6− 2022m5, in percent. In each month, the expected component is
computed as the sum of the contributions of the constant term, initial condition and lagged cross-sectional
averages of return and realized volatilities. Estimation sample: 2010m6− 2022m5.

A and B) shows the historical decomposition of the cumulative return observed for the

aforementioned green portfolio’s constituents (the ticker and the industry are reported

in brackets): Commerzbank AG (CBK, Banks), Banco Santander S.A. (SAN, Banks),

Koninklijke KPN N.V. (KPN, Telecom Services), Orange S.A. (ORA, Telecom Services),

and Banco Bilbao Vizcaya Argentaria S.A. (BBVA, Banks). The left column of Figure

8 shows the time-varying contribution of the total unexpected component (green solid

line) computed as the sum of the contribution of the total common shocks (magenta

solid line) and of the total idiosyncratic shocks (yellow solid line) to the dynamics of the

top five green portfolio’s constituents. For comparison, we also report the time-varying

contribution of the total unexpected components to the dynamics of the brown portfolio

(i.e., average across the brown portfolio’s constituents) (brown dashed line). The right

column of Figure 8 shows the role of the financial leverage shock (blue solid line) to the

time-varying contribution of the total idiosyncratic shocks (yellow solid line).
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The empirical evidence confirms an out-performance (in terms of the unanticipated

component) of the top five 5 green portfolio’s constituents relative to the brown portfolio.

In particular, the empirical findings show (see Figure 8, left column of panels A and B)

that, once we control for common shocks, the unanticipated component of SAN, ORA,

and BBVA constituents (e.g., the one explained by idiosyncratic shocks) out-performs the

brown portfolio’s total unexpected component over the whole sample period. However, the

out-performance of the idiosyncratic component for the CBK and KPN constituents (see

Figure 8, left column of panels A) occurs only during the last few months of the sample.

Finally, we turn the focus on the contribution of the two identified idiosyncratic shocks to

the dynamics of the cumulative return observed for the top five green constituents (see the

right column of Figure 8, panels A and B). Figure 8 (panels A and B) shows that while

for the constituents belonging to the banking sector, i.e., CBK, SAN, and BBVA, the

financial leverage shocks explain most of the variation observed in the total idiosyncratic

component (with the only exception of the last part of the sample), the total idiosyncratic

component estimated for the Telecommunication services’ constituents (KPN and ORA)

is mainly driven by the risk aversion shock (at least from the 2013 onward).

5 Conclusions

In this study, we compute the expected and unexpected components of the cumulative

return on a climate risk hedging portfolio (green-minus-brown portfolio) using European

stock market data. The information set used is given by the one month return and

realized volatility of 40 constituents of the green portfolio (i.e., the low carbon emission

portfolio monitored by Refinitiv) and, separately, of 41 constituents for a brown portfolio

(underlying the Oil&Gas and Utilities industry sectors of the Eurostoxx 600). We fit a

Panel Structural VAR to the constituents of the green portfolio and, separately, those for

the brown portfolio. In line with Cesa-Bianchi et al. (2020), we control for cross-sectional

dependence including, as exogenous variables, the common shocks to the cross-sectional

averages of return and volatilities estimated in a first stage of the analysis and the lagged

values of the cross-sectional averages for the two endogenous variables. The common

shocks are retrieved in a first stage through Structural VAR and they are interpreted as

portfolio shocks. Using the historical decomposition, we find, in line with Pástor et al.

(2022), an out-performance of the expected component of the brown portfolio cumulative

return relative to the one for the green portfolio and the out-performance of the unexpected

component of the cumulative return on the green portfolio. Our findings suggest that, as
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for Europe, green stocks play the role, according to the market, of climate risk hedging

(implying a small risk premium driving their expected return relative to the one associated

with brown stocks). However, during the sample period examined, there is evidence of a

rise in investors’ demand for green assets, driving up green asset prices and motivated by

rising climate concerns. We also extend the analysis of Pástor et al. (2022), exploring the

performance of the top 5 constituents of the green portfolio in terms of climate hedging

(that is, those which are found to have the largest negative premium relative to the brown

portfolio). In particular, we focus on the role played by idiosyncratic shocks in shaping the

dynamics of the unexpected component of the aforementioned constituents. Finally, we

are able to identify statistically (exploiting the non-gaussian time series properties of both

endogenous variables) the idiosyncratic shocks underlying the dynamics of the constituents

and, then, to interpret them as risk aversion and financial leverage innovations.
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Appendices

Appendix A. Moving Average representation

Consider the Panel Factor-Augmented VAR model described in equation (1), which is

estimated by using a lag length equal to two for both the lagged endogenous variables

yit−ℓ and the lagged cross-sectional averages ȳt−ℓ, for ℓ = 1, 2 (see Section 4):

yit = µi +
2∑

ℓ=1

Φiℓyit−ℓ +∆iε̂t +
2∑

ℓ=1

Θiℓȳt−ℓ +Bi0ξit (A.1)

where yit = (r′it, RV ′
it)

′ is the 2 × 1 vector of endogenous variables observed for the i-th

constituent, with i = 1, . . . , N , at month t (see equation 1, for further details). As described

in Section 2.2, the model in equation (A.1) can be re-written as a VARX(1,2) using its

companion representation as follows:

Yit = µi +ΦiYit−1 +∆iÊt +Θi1Ȳt−1 +Θi2Ȳt−2 +Bi0Ξit (A.2)

where Yit and Yit−1 contains the endogenous variables for the i-th constituent, Êt contains
the common factors, Ȳt−1 and Ȳt−2 contains the lagged cross-sectional averages, and Ξit

contains the idiosyncratic structural shocks. Moreover, µi, Φi, ∆i, Θi1, Θi2 and Bi0 are

the matrices containing respectively the constituent-specific intercepts, slope coefficients,

loadings associated with the common factors, coefficients associated with the lagged cross-

sectional averages, and impact multiplier coefficients. Under the stability condition, each

VARX in equation (A.2) admits the following Moving Average (MA) representation:

Yit =
∞∑
j=0

Φj
iµi +Φ∞

i Yi0 +
∞∑
j=0

Φj
i∆iÊt−j +

∞∑
j=0

Φj
iΘi1Ȳt−j−1 +

∞∑
j=0

Φj
iΘi2Ȳt−j−2+ (A.3)

+
∞∑
j=0

Φj
iBi0Ξit−j

Moreover, the MA representation of the vector of endogenous variables (yit) can be

computed by premultiplying equation (A.3) by the 2×4 selection matrix J = [I2 : 0 : · · · : 0]:
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yit = JYit =
∞∑
j=0

JΦj
iµi + JΦ∞

i Yi0 +
∞∑
j=0

JΦj
i∆iÊt−j +

∞∑
j=0

JΦj
iΘi1Ȳt−j−1+ (A.4)

+
∞∑
j=0

JΦj
iΘi2Ȳt−j−2 +

∞∑
j=0

JΦj
iBi0Ξit−j

Given that µi = J ′Jµi, Yi0 = J ′JYi0, ∆iÊt−j = J ′J∆iÊt−j, Θi1Ȳt−j−1 = J ′JΘi1Ȳt−j−1,

Θi2Ȳt−j−2 = J ′JΘi2Ȳt−j−2, and Bi0Ξit−j = J ′JBi0Ξit−j, the MA representation defined in

equation (A.4) can be written as follows:

yit =
∞∑
j=0

JΦj
iJ

′Jµi + JΦ∞
i J ′JYi0 +

∞∑
j=0

JΦj
iJ

′J∆iÊt−j +
∞∑
j=0

JΦj
iJ

′JΘi1Ȳt−j−1+ (A.5)

+
∞∑
j=0

JΦj
iJ

′JΘi2Ȳt−j−2 +
∞∑
j=0

JΦj
iJ

′JBi0Ξit−j

=
∞∑
j=0

Ψijµi +Ψi∞yi0 +
∞∑
j=0

Ψij∆iε̂t−j +
∞∑
j=0

ΨijΘi1ȳt−j−1 +
∞∑
j=0

ΨijΘi2ȳt−j−2+

+
∞∑
j=0

ΨijBi0ξit−j

where Ψij = JΦj
iJ

′ is the MA coefficients matrix, for j = 0, 1, . . . ,∞, and µi = Jµi,

∆iε̂t−j = J∆iÊt−j, Θi1ȳt−j−1 = JΘi1Ȳt−j−1, Θi2ȳt−j−2 = JΘi2Ȳt−j−2, and Bi0ξit−j =

JBi0Ξit−j. From the MA representation in equations (A.3)-(A.5) we derive structural

impulse response functions and historical decomposition (see Section 2.2).

Appendix B. Different lag structure

In this section, we estimate the Panel Factor-Augmented VAR described in equation (1)

by using a different lag structure. In particular, both in the aggregate SVAR (see equation

2) and in the constituent-specific VARX, we set the number of lags equal to six.20 Figure

B.1 shows the historical decomposition of the cumulative return of the green-minus-brown

20Specifically, in the constituent-specific VARX (see equation 1), the lag length of the endogenous
variables (yit−ℓ) and that of the cross-sectional averages (ȳt−ℓ) are both set to six, i.e., ℓ = 1, . . . , 6. We
also replicate the empirical analysis using twelve lags. The results, which are qualitatively similar to those
discussed both in Section 4 and in this Appendix, are available upon request.
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(GMB) portfolio into the expected and unexpected components.21 Similarly to the results

obtained by estimating the model using a lag of order two (discussed in Section 4), the

evidence of the out-performance of the expected component of brown stocks’ cumulative

return and of the out-performance of the green portfolio in terms of unexpected components

is confirmed also when using a larger lag order. Moreover, we also compute the ranking

of the green portfolio’s constituents in terms of their climate risk hedging properties. In

line with the analysis described in Section 4.2, in Table B.1, we report the historical mean

of the expected return of the green portfolio’s constituents (deviation from the expected

return of the brown portfolio). As shown in Table B.1, 4 out of the top 5 green constituents

obtained from the estimation of the baseline model specification (see Table 8) are ranked

in the top 5 positions: CBK, SAN, ORA, BBVA. Overall, these results suggest that the

empirical evidence discussed in Section 4 is robust to alternative lag lengths.

21See Section 4.2, for more details on the construction of the historical decomposition of the GMB
portfolio’s cumulative return.
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Table B.1: Average expected return of the green constituents in percent deviation from
the brown average constituent: different lag structure.

Rank Constituent Deviation Env. score Rank Constituent Deviation Env. score

1 CBK -2.143 93 21 ELISA -0.386 71
2 SAN -1.592 90 22 BMW -0.283 81
3 ORA -1.567 86 23 KBC -0.168 93
4 BBVA -1.561 95 24 PHIA -0.137 81
5 TEF -1.542 82 25 RAND -0.103 63
6 CABK -1.507 85 26 MB -0.101 47
7 KPN -1.195 76 27 VIV 0.017 81
8 NOKIA -1.186 70 28 ALV 0.113 95
9 DTE -0.907 85 29 SU 0.164 68
10 CA -0.872 91 30 ITX 0.221 96
11 GLE -0.802 96 31 KESKOB 0.249 78
12 ALO -0.654 99 32 STM 0.306 95
13 HEN3 -0.640 70 33 DB1 0.422 66
14 ISP -0.576 97 34 MUV2 0.455 94
15 URW -0.523 88 35 UCB 0.480 77
16 G -0.511 96 36 KER 0.768 96
17 INGA -0.497 86 37 SY1 0.818 64
18 PUM -0.487 85 38 DSY 1.176 77
19 SIE -0.410 88 39 CAP 1.238 77
20 BNP -0.388 95 40 AMS 1.414 73

Notes. Expected component of each of the 40 constituents entering the Refinitiv Eurozone Low Carbon
Select Index (i.e., green portfolio) computed as the deviation from the expected component of the brown
average constituent (i.e., obtained by computing the mean across the brown portfolio’s constituents) and
averaged across the full sample 2010m6− 2022m5, in percent. In each month, the expected component is
computed as the sum of the contributions of the constant term, initial condition and lagged cross-sectional
averages of return and realized volatilities. The lag length of the Panel Factor-Augmented VAR (see equation
1) is set equal to six. Estimation sample: 2010m6− 2022m5.
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Figure B.1: Historical decomposition of the green-minus-brown (GMB) portfolio’s
cumulative return: different lag structure.

−30

0

30

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Years

Unexpected
Return
Expected

Historical decomposition of cumulative GMB returns (%)

Notes. Contribution of the expected (blue solid line) and unexpected (red solid line) components to the
green-minus-brown (GMB) portfolio’s cumulative return (black solid line) in percent. For more details on
the chart, see the notes in Figure 7. The lag length of the Panel Factor-Augmented VAR (see equation 1)
is set equal to six. Estimation sample: 2010m6− 2022m5.
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